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Problem 1: [20 pts] The MIPS code below executes on the illustrated seemingly familiar implementation.
If you look closely you’ll notice that certain bypass paths that are present in the five-stage implementation
usually used in class are missing from the diagram below.
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(a) Show the execution of the code below on the illustrated implementation for enough iterations to determine
CPI. Determine the CPI.

�Execution diagram.

�Double-check for bypass paths, stall when necessary.

�Compute CPI.

The pipeline execution diagram appears below.

Note the following close dependencies: lw/add through r2, add/sw through r1, and addi/lw (in the 2nd iteration) through r4.

The add stalls two cycles (2 and 3) due to the lw/add dependence, so that when the add can read the value of r2 when it is in
ID (bypassed through the register file). In the bypassed implementation used in class the add would only stall one cycle, since the
value of r2 could be bypassed from WB to EX, but in the implementation above there is no bypass from the WB stage to the upper
input to the ALU, where the rs value is needed.

Due to the add/sw dependence the sw stalls one cycle (5), because the ME-to-EX bypass to the store value multiplexor (the one
connecting to EX/ME.rtv) is missing. With that one-cycle stall the add is in WB while the sw is in EX, where the WB-to-EX bypass
to the store value multiplexor can be used. In the bypassed implementation used in the class notes there would be no stall here.

The addi/lw dependence does not cause a stall because there is a bypass from ME to EX going to the upper ALU mux.

Common Mistakes: Often beginners forget that the store value, r1 in this case, is a source value. In this case it doesn’t matter,
but another common mistake is forgetting that the branch operands are sources, and that these sources cannot be bypassed to in
most of the implementations used in class. People in a hurry sometimes mistake the first branch operand as an output.

To compute the CPI, divide the iteration time by the number of instructions. The first iteration starts at cycle 0 (the iteration starts
when the first instruction of the loop body is in IF), the second at cycle 8, and so the first iteration takes 8 cycles. Since the first
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and second iterations will have the same stalls we can conclude that all subsequent iterations will take 8 cycles. An iteration has five
instructions, so the CPI is 8

5
= 1.6 CPI.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r3 IF ID ----> EX ME WB

sw r1, 4(r4) IF ----> ID -> EX ME WB

bne r4, r5 LOOP IF -> ID EX ME WB

addi r4, r4, 8 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r2, 0(r4) IF ID EX ME WB
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Problem 1, continued:

(b) The code above should have encountered at least one of the missing bypass paths. Choose one of those
missing bypass paths and design control logic for it. The ID-stage control logic should generate a 1-bit signal
STALL that will be logic 1 when the instruction in ID will have to stall because of the missing bypass path.

� Show which missing bypass path the control logic is for.

�Control logic for missing bypass.

Solution appears below, and includes logic for both bypass paths. The logic for the lw/add dependence appears in green, and logic
for the add/sw dependence appears in blue. The stall signal appears in maroon.

The logic for the lw/add dependence will stall for any instruction that needs a value bypassed from the WB stage to the upper ALU
input. For the lw/add case, this logic will generate the stall signal in cycle 3, but not in cycle 2. We assume that some other logic
generates the cycle-2 stall. This logic assumes that every instruction uses an rs source (and most do).

The logic for the add/sw dependence will stall for any instruction that needs a value bypassed from the ME stage for the lower ALU
input. The logic detects an instruction that uses the rs value as a source, assuming any Type R instruction and store instructions.
The stall is generated if such an instruction is present in ID and if the instruction in EX writes the same register as the ID instruction’s
rt source.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst dst dstDecode

dest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

15:0

D
0 1

='

='

isStore

TypeR

opcode

31:26 rt

rs

25:21

20:16

STALL

opcode

31:26

Missing Bypass

Logic to stall to

avoid this 

missing bypass.

Missing Bypass

Logic to stall to

avoid this 

missing bypass.

='

4



Problem 2: [15 pts] Consider a MIPS implementation in which the memory port is split into two stages,
Ma and Mb. With this change the clock frequency can increase from 1 GHz to 1.2 GHz; with this added stage
our implementation is now six stages. A sample execution appears below.

add r2, r3, r4 IF ID EX Ma Mb WB

lw r1, 4(r2) IF ID EX Ma Mb WB

(a) Ignoring the cost of Ma and Mb, how is the cost of the pipeline changed in this design? Consider bypass
paths.

�Cost change, ignore Ma and Mb, consider bypass, etc.

There is another pipeline latch, which includes an ALU register (32 bits) and a dst register, 5 bits, plus control bits. The ALU value
needs to be bypassed to the EX stage, the cost of that is 32 bits times three mux inputs (the two at the ALU inputs, and the one for
the store value).

(b) Provide an example of a code fragment which will execute more slowly with the six-stage pipeline. Assume
that all reasonable bypass paths are provided.

�Code fragment that will run more slowly.

The code fragment below runs more slowly, that’s because of the dependence of the add on the lw, called a load/use pair.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2) IF ID EX Ma Mb WB

add r3, r1, r3 IF ID ----> EX Ma Mb WB

(c) Provide an argument that this change is good.

�This change is good because:

The change will add one stall cycle to a load/use pair, as in the example above. Suppose 1 out of every 3 instructions was a load
followed by an instruction that uses the loaded value, also suppose that there are no other stalls. The ideal execution time for 300
million instructions is 300 million cycles. If 1 out of 3 is a load/use, then there are 100 million load/uses which will add 100 million
stall cycles on the five-stage implementation and 200 million stall cycles on the six-stage implementation. Then the execution time
for 300 million instructions would increase from 400 million cycles 400 × 106 1

1 GHz
= 400 ms to 500 million cycles which is

500× 106 1

1.2 GHz
= 416 ms, which is slower.

But, it’s likely that far fewer than 1 out of 3 instructions will be the annoying load/use case, suppose it is 1 out of 10. Then with

the ordinary ME stage execution is 330 × 106 1

1 GHz
= 330 ms and with the split stage 360× 106 1

1.2 GHz
= 300 ms which is

faster.

Note that the extra stage does not slow things down when there is no stall, as in the example below.

# Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2) IF ID EX Ma Mb WB

addi r2, r2, 4 IF ID EX Ma Mb WB

xor r5, r6, r7 IF ID EX Ma Mb WB

add r3, r1, r3 IF ID EX Ma Mb WB
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Problem 3: [15 pts] Answer the following questions about a blt instruction.

(a) MIPS lacks an instruction such as blt r1, r2 TARG (branch if r1 less than r2). For the questions below,
which ask about the suitability of such an instruction, consider implementations similar to the five-stage
pipeline covered in class.

�Explain why adding such an instruction would slow such implementations even though beq r1,r2 TARG is
okay.

Because of the time needed to do a magnitude comparison, which starts only after register values are retrieved.

�Using a PED, explain why there would be no problem adding a blt instruction if the ISA had two delay
slots.

Because then the branch could be resolved in EX without penalty, that would give plenty of time for the magnitude comparison. For
example, consider the execution of the two code fragments below. The first is for a one-delay–slot MIPS, with a blt instruction
added. If we want to avoid squashing or stalling for a taken branch, the branch target must be at the input to the PC when the branch
is in ID, the end of cycle 2 below. That leaves only one cycle to retrieve r1 and r2 from the register file and perform a magnitude
comparison. The second code fragment is for a hypothetical two-delay-slot MIPS also with the blt instruction. Because there are
two delay slots the branch target address does not need to be at the input of the PC until the end of the cycle when the branch is in
EX, cycle 2 in the example. That gives the implementation two cycles to retrieve the register values and perform the comparison.

Note that in the example below the second delay slot is filled with a useful instruction. That won’t happen all the time for real code.

# SOLUTION - Execution on a one-delay-slot MIPS that includes blt.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

addi r8, r8, 1 IF ID EX ME WB

blt r1, r2 TARG IF ID EX ME WB

add r4, r5, r6 IF ID EX ME WB

lw r10, 4(r12)

TARG:

xor r7, r8, r9 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

# SOLUTION - Execution on a hypothetical two-delay-slot MIPS.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

blt r1, r2 TARG IF ID EX ME WB

add r4, r5, r6 IF ID EX ME WB

addi r8, r8, 1 IF ID EX ME WB

lw r10, 4(r12)

TARG:

xor r7, r8, r9 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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(b) The code fragment below includes the hypothetical MIPS instruction, blt.

# Hypothetical MIPS Instruction

blt r1, r2, targ

xor r4, r5, r6

� Show an equivalent MIPS code fragment without using blt.

Solution appears below, in which a slt instruction is used to perform the magnitude the was performed by the blt.

# SOLUTION

slt r3, r1, r2

bne r4, r0, targ

xor f4, r5, 46

� Show an equivalent SPARC V8 code fragment.

Solution appears below. SPARC branch instructions use the value of the integer condition code register, icc, to determine whether
to take the branch. The icc is written by cc versions arithmetic and logical instructions, their mnemonics end with cc, a common
example is subcc.

# SOLUTION

subcc r1, r2, g0 # g0 = r1 - r2; icc bits (Negative,oVerflow,Zero,Carry) also set

blt targ # Branch if negative.

xor r5, r6, r4
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Problem 4: [20 pts] For the ISA design tradeoff questions below consider the following data: A typical
program executes 1010 dynamic instructions, of these 1.38 × 109 are branches (half of which are taken),
9.12× 107 are indirect jumps (jr and jalr), 2.22× 108 are direct jumps (j and jal).

Consider a debate by those developing the MIPS ISA: don’t include format J, which means no j and no jal

instructions.

(a) Which MIPS instructions can be used to replace j and jal in the code below, paying attention to the
hints in the target names?

�Replacement for j and jal in code below, paying attention to target names.

The solution appears below. The j can be replaced by a beq instruction that uses a condition that will always be true. The use of a
branch was possible because the target of the j was not every far away, and so the displacement would fit within the branch’s 16-bit
displacement (immediate) field.

A branch is not a suitable replacement for the jal for two reasons: the jal needs to save a return address and because the target
is too far away (the jump uses a 26-bit field to store the target, which could be too distant for the branch’s 16-bit field). For that
reason a jalr instruction is used, along with two instructions to load the target address. The upper half and lower half

assembler macros (made up) return the corresponding parts of the target address. MIPS assembler programs can use the synthetic
la instruction to replace the lui and ori instructions.

# SOLUTION

beq r0, r0, NOT_TOO_FAR_AWAY

xor r1, r2, r3

lui r4, upper_half(A_FAR_AWAY_PROCEDURE)

ori r4, r4, %lower_half(A_FAR_AWAY_PROCEDURE)

jalr r4

xor r1, r2, r3

(b) Determine how much longer (as a percentage or absolute time) it would take to run the typical program
described above without the format J instructions. Assume execution is always at 1 CPI. (A formula is
okay.)

�Percent increase in execution time without format J:

Assume that 25% of the direct jumps are j instructions that can be replaced by a single branch. The remainder of the direct branches
must be replaced by a set of three instructions. No changes are made to indirect jumps or branches. The increase in the number of

cycles will be 2× 0.25× 2.22× 108 = 1.11× 108. Expressed as a percentage, that is 100 1.11×10
8

1010 = 1.11%.

(c) What parts of out implementation would be unnecessary without format J? Approximately how many
bypass paths could you add with the cost saved by not having the format J instructions?

�What parts would be eliminated?

�How many bypass paths could be added with cost savings?

The connection from the ii field, which goes to the IF-stage mux.
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Problem 5: [15 pts] Answer the following ISA design questions.

(a) Suppose that one of the first modern computer designers, working in the 1940s, made the following
statement: “Let’s define an ‘Instruction Set Architecture’ [the last three words spoken slowly, for emphasis]
and then later design some hardware ‘im-ple-men-ta-tions’ of that architecture.” Would that be a good idea?
Explain. Hint: Pay attention to the slanted words.

� ISA before implementation in 1940s, good or bad? Explain.

No, because computer engineers did not have enough experience to complete the final design of an ISA before working on its imple-
mentation. Lacking this experience, they might have included features in the ISA which would not be practical to build.

Grading note: Many answers gave the usual benefits for separating ISA design from implementation. Some

tried to use features of 1940’s technology in their answers, such as costliness. Cost is always an issue. The

key difference is in the amount of computer design experience of the first computer engineers.

(b) CISC ISAs have variable-length instructions.

�Benefit of variable-length instructions for CISC.

Allows for small programs. Allows for instructions with long immediates.

�Benefit of fixed-length instructions for RISC.

The logic needed to fetch and decode instructions is simple because the address of the next instruction is the current instruction plus
(usually) four. Branch displacements can be in units of instructions giving them a four-times longer reach, per bit.
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Problem 6: [15 pts] Answer each question below.

(a) In our π program demo we found that turning optimization on reduced execution time by half (yay!)
but reduced the instruction count even further, from 325 million to 100 million dynamic instructions. This
means that optimization increased (made worse) CPI from 2.77 to 4.93. Note: The data is from an earlier

semester, so the numbers won’t exactly match.

�Optimization is supposed to eliminate stalls, why did the CPI go up?

The divide instructions by far had the longest latency and were responsible for the most stalls. The optimized code had the same
number of divides as the unoptimized code, but many fewer instructions overall, and so CPI went up.

�What category of instruction was completely eliminated from the loop body of the π program by optimization.

Loads and stores. They were unnecessary because there were enough registers for the values that were being loaded and stored.

(b) SPECcpu currently has two sets of results, base and peak. Consider a third set, shrink-wrap, for people
who buy mass-marketed software (say, buying a word processor at an office supply store).

�Who should use the peak numbers and who should use the base numbers?

Base: Those who plan to use code in which an ordinary effort at optimization will be made. Peak: Those using code developed with
a heroic effort put into optimization.

Grading Note: Many answers implied that it was the buyers of software who were responsible for setting

up the compile switches. The answers should have indicated that it was those developing software for such

buyers who would have to choose compiler switches.

�Explain how the run and reporting rules might be modified for the new shrink-wrap results.

The key difference is that shrink-wrap software cannot be custom compiled for your particular implementation (unless you are a really
important person, if so send LSU lots of money and we’ll be happy to name something after you). Therefore the rules would have to
forbid setting switches for the particular implementation on which the benchmarks will be run. Writing a rule to that effect would be
tricky, perhaps: The compile switches shall not identify the system being tested for purposes of optimization and the compiler shall
not generate the same code as would be generated when specifically targeting the implementation.
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