
LSU EE 4720 Homework 2 Due: 17 September 2010

Problem1: Consider the execution of the code fragments below on the illustrated implementation.

format


immed


IR


Addr

25:21


20:16


IR


IF
 ID
 EX
 WB
MEM


IR
 IR


rsv


rtv


IMM


NPC


ALU
Addr


Data


Data


Addr

D In


+4


PC


Mem


Port


Addr


Data


Out


Addr


Data


In


Mem


Port


Data


Out
rtv


ALU


MD


dst
 dst
 dst

Decode


dest. reg


=

=0

<0


E


Z


N


NPC


• A value written to the register file can be read from the register file in the same cycle. (For
example, if instruction A writes r1 in cycle x (meaning A is in WB in cycle x) and instruction
B is in ID in cycle x, then instruction B can read the value of r1 that A wrote.)

• As one should expect, the illustrated implementation will execute the code correctly, as
defined by MIPS-I, stalling and squashing as necessary.

LOOP:

lw r3, 0(r1)

add r4, r4, r3

bne r1, r2 LOOP

addi r1, r1, 4

xor r7, r8, r3

sw r4, 16(r5)

(a) Show a pipeline execution diagram for this code running for at least two iterations.

• Carefully check the code for dependencies, including dependencies across iterations.

• Base timing on the illustrated implementation, pay particular attention to how the branch
executes.

(b) Find the CPI for a large number of iterations.

(c) How much faster would the code run on an implementation similar to the one above, except
that it resolved the branch in EX instead of ME? Explain using the pipeline execution diagram above,
or using a new one. An answer similar to the following would get no credit because “should run
faster” doesn’t say much: A resolution of a branch in EX occurs sooner than ME so the code above

should run faster.. Be specific, and base your answer on a pipeline diagram.

1

http://www.ece.lsu.edu/ee4720/


Problem 2: Apologies in advance to those tired of the previous problem. Consider the execution
of the code below on the implementation from the last problem. The code is only slightly modified.

(a) Show a pipeline execution diagram for this code, and compute the CPI for a large number of
iterations. It should be faster.

LOOP:

add r4, r4, r3

lw r3, 0(r1)

bne r1, r2 LOOP

addi r1, r1, 4

add r4, r4, r3

sw r4, 16(r5)

(b) How much faster would the code above run on the implementation that resolves branches in EX

(from the previous problem)?

(c) Suppose that due to critical path issues, the resolve-in-EX implementation had a slower clock
frequency. Let φME be the clock frequency of the resolve-in-ME implementation (the one illustrated),
and φEX be the clock frequency of the resolve-in-EX implementation. Find φEX in terms of φME such
that both implementations execute the code fragment above in the same amount of time. That is,
find a clock frequency at which the benefit of a smaller branch penalty is neutralized by the lower
clock frequency on the code fragment above.

2


