
LSU EE 4720 Homework 1 Solution Due: 15 September 2010

Problem 1: Diagnose or fix the MIPS-I problems below.

(a) Explain why the code fragment below will not complete execution. Fix the problem, assuming
that the load addresses are correct. (Problems such as this occur when operating on data prepared
on a different system.)

lw r1, 0(r2)

lw r3, 6(r2)

MIPS loads and stores must be to aligned addresses, meaning that the address must be a multiple of the data size.
In this case the data size is 4 (because the instructions are lw). Because they both use the same base register, r2, at
most one of the load addresses can be a multiple of 4.

The code below fixes the problem by using lb instead of lw and sliding the bytes into the respective destination
registers. A faster solution is possible: based on the two least-significant bits of r2 and branch to one of four routines.
(For example, if the two-least significant bits were zero then lw r1, 0(r2) would work and two lhu could be used
for 6(r2).)

Solution

addi r4, r2, 4

LOOP:

sll r1, r1, 8

lbu r11, 0(r2)

or r1, r1, r11

sll r3, r3, 8

lbu r13, 6(r2)

or r3, r3, r13

bne r2, r4 LOOP

addi r2, r2, 1

(b) The code below will execute, but it looks like there might be a bug. Explain.

jal subroutine

add r31, r0, r0

The jal instruction writes the return address in register r31, but the instruction in the delay slot, which is executed
immediately after the jal, overwrites r31. If the programmer didn’t care about the return address then a j instruction
would be used, so the code above probably has a bug.

(c) The two fragments below are almost but not quite MIPS-I. Re-write them using MIPS instruc-
tions so they accomplish what the programmer likely intended.

Fragment 1

lw r1, 0(r2+r3)

Fragment 2

bgti r1, 101 target

nop

1

http://www.ece.lsu.edu/ee4720/

Solution - Fragment 1

#

MIPS does not have a load that uses two source registers.

add r1, r2, r3

lw r1, 0(r1)

Solution - Fragment 2

#

MIPS branches cannot perform magnitude comparisons (gt between two

registers) nor can they compare to an immediate (the 101).

slti r2, r1, 102

bne r1, r0 target

nop

2

(d) The code fragments below are correct, but not as efficient as they could be. Re-write them
using fewer instructions (and without changing what they do).

Fragment 1

addi r1, r0, 0xaabb

sll r1, r1, 16

ori r1, r1, 0xccdd

Fragment 2

add r1, r0, r0

addi r1, r1, 123

Fragment 1 - Solution

#

Hel-llow, lui is in the instruction set for a reason!

lui r1, 0xaabb

ori r1, r1, 0xccdd

Fragment 2 - Solution

#

Too much exposure to accumulator-style ISAs can ingrain bad habits.

In particular a register does not need to be cleared before it is

written.

addi r1, r0, 123

3

