
LSU EE 4720 Homework 4 Solution Due: 28 April 2010

Problem 1: A deeply pipelined MIPS implementation is constructed from our familiar five-stage pipeline
by splitting IF, ID, and ME each into two stages, but leaving EX and WB as one stage. The total number of
stages will be eight, call them F1, F2, D1, D2, EX, Y1, Y2, and WB. In this system branches are resolved at the
end of D2 (rather than at the end of ID). Assume that all reasonable bypass paths are present.

(a) Provide a pipeline execution diagram of the code below for both the 5-stage and this new implementation,
for enough iterations to compute the IPCs.

Solution appears below. Note that for the 8-stage system the second iteration, starting in cycle 9, starts with the processor
in the same state as the third iteration, starting in cycle 18, and so the second iteration can be used to compute IPC. The

execution rate is 5

18−9
= 5

9
insn/cycle for the eight-stage system. By a similar argument the rate for the five-stage system is

5

12−6
= 5

6
insn/cycle .

Solution

Eight-Stage Pipeline

#

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

addi r2, r2, 4 F1 F2 D1 D2 EX Y1 Y2 WB

lw r1, 0(r2) F1 F2 D1 D2 EX Y1 Y2 WB

add r3, r3, r1 F1 F2 D1 D2 ----> EX Y1 Y2 WB

bne r5, r4 LOOP F1 F2 D1 ----> D2 EX Y1 Y2 WB

addi r5, r5, 1 F1 F2 ----> D1 D2 EX Y1 Y2 WB

F1 ----> F2x

F1x

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

addi r2, r2, 4 F1 F2 D1 D2 EX Y1 Y2 WB

lw r1, 0(r2) F1 F2 D1 D2 EX Y1 Y2 WB

add r3, r3, r1 F1 F2 D1 D2 ----> EX Y1 Y2..

bne r5, r4 LOOP F1 F2 D1 ----> D2 EX Y1..

addi r5, r5, 1 F1 F2 ----> D1 D2 EX..

F1 ----> F2x

F1x

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

addi r2, r2, 4 F1 F2..

Five-Stage Pipeline

#

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

addi r2, r2, 4 IF ID EX ME WB

lw r1, 0(r2) IF ID EX ME WB

add r3, r3, r1 IF ID -> EX ME WB

bne r5, r4 LOOP IF -> ID EX ME WB

addi r5, r5, 1 IF ID EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

addi r2, r2, 4 IF ID EX ME WB

lw r1, 0(r2) IF ID EX ME WB

add r3, r3, r1 IF ID -> EX ME WB

bne r5, r4 LOOP IF -> ID EX ME WB

addi r5, r5, 1 IF ID EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

addi r2, r2, 4 IF ID EX ME WB

1

http://www.ece.lsu.edu/ee4720/

(b) Suppose the 5-stage MIPS runs at 1GHz. Choose a clock frequency for the 8-stage system for which the
time to execute the code above is the same as for the 5-stage MIPS.

First, express the execution rates for the two systems above in instructions per second. Let φ5 and φ8 denote the clock
frequencies of the 5-stage and 8-stage systems. The execution rate in instructions per second is the CPI times the clock frequency:

CPI × φ = φ

IPC
. Solving 1.8φ8 = 1.2φ5 for φ8 yields φ8 = 1.8

1.2
φ5 = 1.5GHz .

(c) Consider two ways to make a 7-stage system from the 8-stage system. In method ID, the two ID stages
(D1 and D2) are merged back into one (or if you prefer, the ID stage was never split in the first place). In
method ME, the two ME stages (Y1 and Y2) are merged back into one (or were never split).

Which method is better, and why? Assume that the eight-stage system runs at 1.8GHz. Consider both
the likely impact on clock frequency (remembering that you are at least senior-level computer engineering
students) and the benefit for code execution (don’t just consider the code above, argue for what might be
typical code).

As mentioned in class a number of times, it is the memory stage which would take the most time. Here are sample stage timings
with memory taking the most: IF, 1 ns; ID, 0.4 ns; EX, 0.56 ns; ME, 1 ns; and WB, 0.2 ns. For the 5-stage system memory
determines the clock frequency. On the 8-stage system, assuming the memory stages timings are split, clock is determined by the EX
stage.

Based only on clock frequency it would be better to merge the D1 and D2 stages, since that would not impact clock frequency
(the original ID could handle 1.8GHz). In contrast, if the memory stages were merged the clock would be back to 1GHz and so
there would be no performance gain.

Splitting stages can introduce stalls or squashes. Because memory was split, the 8-stage system suffers two stall cycles on a
load/use pair. Because IF and ID were split there are two squashes after each taken branch.

Merging Y1 and Y2 would eliminate one stall cycle for each load/use pair. However, scheduling can eliminate many such stalls.
Merging D1 and D2 would eliminate one squash on every taken branch. Since many taken branches can’t be avoided and occur about
1 out of every 12 instructions in integer code, it would be better to merge the D1 and D2 based on code considerations.

In summary, based on both clock frequency impact and stall/squash benefit, it would be better to merge the D1 and D2 stages.

Problem 2: Itanium is a VLIW ISA designed for general-purpose use. Being a VLIW ISA (as defined
in class) its features were chosen to simplify superscalar implementations. The questions below are about
such features, read the Intel Itanium Architecture Software Developer’s Manual Volume 1, Section 3 for
details and concentrate on Sections 3.3 and 3.4. The manual is linked to the course references page,
http://www.ece.lsu.edu/ee4720/reference.html. Use this copy to be sure that section and table num-
bering used here match.

(a) Section 3.3 mentions four types of functional unit, and where an instruction using a particular unit can
be placed in a bundle (see Table 3-9 and 3-10).

Suppose an Itanium implementation fetches one bundle per cycle. Indicate the maximum number of
execution units of each type needed. (That is, there would be no advantage of having more than this number.)
Assume that the units all have latency 1 or else are fully pipelined.

The table below shows the types of execution units that can be used by each slot, as well as the maximum number of units
of each type that any bundle can need. The table was constructed by examining table 3-10, and noting that the L-unit/X-unit
instructions really use an I or B unit.

The bottom of the table shows the maximum number of times a unit will appear in a bundle. There would be no benefit in
having more than that number. For example, there would be no point in having three M-units (assuming fully pipelined) because an
instruction in slot 2 would never use it.

Execution Unit

Slot 0: M B

Slot 1: M B I F

Slot 2: B I F*

Max: 2 3 2 1 <- Maximum useful number of units.

(b) For this problem suppose the implementation had the minimum number of units of each type, one. Sketch
the pipeline execute stages, and show connections to each of the FU inputs. There should be three sets of
source operands flowing down the pipeline. Some (or all) of the execute units should have multiplexors at

2

http://www.ece.lsu.edu/ee4720/reference.html

their inputs to select operands from one of the three instructions in a bundle. Show the multiplexors, and
based on the slot restrictions show the minimum number of inputs.

Solution shown below. The ID stage provides register values for instructions in each slot (RS1v, etc). Note that if there were
no restrictions on which instruction could appear in each slot then each mux would have three inputs. Also note that bypass paths
are not shown.

(c) Notice in Table 3-10 that there is no template with a stop right after Slot 0 and right after Slot 1. Provide
a possible reason for this.

With at most one internal stop a bundle can be issued in at most two pieces. With two internal stops the hardware would have
to allow three pieces, one for each slot, to move separately. The added hardware cost would not be worth the small benefit in code
size.

Suppose there was a template with two such stops (as described above), call this ISA Itanium-stop-stop.
Why might code compiled for Itanium-stop-stop be smaller than code compiled for Itanium?

Because the compiler (or human) would no longer need to insert nops (as a last resort) to comply with the one-internal-stop
restriction.

Consider Itanium and Itanium-stop-stop implementations that fetch one bundle per cycle (same as in
the prior problems). Explain why Itanium-stop-stop might be no faster than Itanium.

Bundle placement and execution (assuming five stages) are shown for code for the regular Itanium and Itanium stop-stop. The
last instruction, or, executes at the same time on both systems, so stop-stop has no execution time advantage. (If the hardware
complexity results in a lower clock frequency then it would have performance disadvantage.)

// Itanium Scheduling

// Bundle 1 - Template 03 0 1 2 3 4 5 6 7

nop // Slot 0 IF ID EX ME WB

add r1 = r2, r3 ;; // Slot 1 IF ID EX ME WB

sub r4 = r1, r5 ;; // Slot 2 IF ID -> EX ME WB

// Bundle 2 - Template 02

nop // Slot 0 IF -> ID EX ME WB

xor r6 = r4, r7 ;; // Slot 1 IF -> ID EX ME WB

or r8 = r6, r9 // Slot 2 IF -> ID -> EX ME WB

// Itanium Stop-Stop

// Bundle 1 - Template 03 0 1 2 3 4 5 6 7

// Bundle 1 - Template SS-1

add r1 = r2, r3 ;; IF ID EX ME WB

3

sub r4 = r1, r5 ;; IF ID -> EX ME WB

xor r6 = r4, r7 ;; IF ID ----> EX ME WB

// Bundle 2 - Template SS-2

or r8 = r6, r9 IF ----> ID EX ME WB

4

