
LSU EE 4720 Homework 4 Due: 28 April 2010

Problem 1: A deeply pipelined MIPS implementation is constructed from our familiar five-stage pipeline
by splitting IF, ID, and ME each into two stages, but leaving EX and WB as one stage. The total number of
stages will be eight, call them F1, F2, D1, D2, EX, Y1, Y2, and WB. In this system branches are resolved at the
end of D2 (rather than at the end of ID). Assume that all reasonable bypass paths are present.

(a) Provide a pipeline execution diagram of the code below for both the 5-stage and this new implementation,
for enough iterations to compute the IPCs.

LOOP:

addi r2, r2, 4

lw r1, 0(r2)

add r3, r3, r1

bne r5, r4 LOOP

addi r5, r5, 1

(b) Suppose the 5-stage MIPS runs at 1GHz. Choose a clock frequency for the 8-stage system for which the
time to execute the code above is the same as for the 5-stage MIPS.

(c) Consider two ways to make a 7-stage system from the 8-stage system. In method ID, the two ID stages
(D1 and D2) are merged back into one (or if you prefer, the ID stage was never split in the first place). In
method ME, the two ME stages (Y1 and Y2) are merged back into one (or were never split).

Which method is better, and why? Assume that the eight-stage system runs at 1.8GHz. Consider both
the likely impact on clock frequency (remembering that you are at least senior-level computer engineering
students) and the benefit for code execution (don’t just consider the code above, argue for what might be
typical code).

Problem 2: Itanium is a VLIW ISA designed for general-purpose use. Being a VLIW ISA (as defined
in class) its features were chosen to simplify superscalar implementations. The questions below are about
such features, read the Intel Itanium Architecture Software Developer’s Manual Volume 1, Section 3 for
details and concentrate on Sections 3.3 and 3.4. The manual is linked to the course references page,
http://www.ece.lsu.edu/ee4720/reference.html. Use this copy to be sure that section and table num-
bering used here match.

(a) Section 3.3 mentions four types of functional unit, and where an instruction using a particular unit can
be placed in a bundle (see Table 3-9 and 3-10).

Suppose an Itanium implementation fetches one bundle per cycle. Indicate the maximum number of
execution units of each type needed. (That is, there would be no advantage of having more than this number.)
Assume that the units all have latency 1 or else are fully pipelined.

(b) For this problem suppose the implementation had the minimum number of units of each type, one. Sketch
the pipeline execute stages, and show connections to each of the FU inputs. There should be three sets of
source operands flowing down the pipeline. Some (or all) of the execute units should have multiplexors at
their inputs to select operands from one of the three instructions in a bundle. Show the multiplexors, and
based on the slot restrictions show the minimum number of inputs.

(c) Notice in Table 3-10 that there is no template with a stop right after Slot 0 and right after Slot 1. Provide
a possible reason for this.

Suppose there was a template with two such stops (as described above), call this ISA Itanium-stop-stop.
Why might code compiled for Itanium-stop-stop be smaller than code compiled for Itanium?

Consider Itanium and Itanium-stop-stop implementations that fetch one bundle per cycle (same as in
the prior problems). Explain why Itanium-stop-stop might be no faster than Itanium.

1

http://www.ece.lsu.edu/ee4720/
http://www.ece.lsu.edu/ee4720/reference.html

