
LSU EE 4720 Homework 3 Due: 19 April 2010

Problem 1: The code below executes on the illustrated MIPS implementation. Assume that any
reasonable bypasses needed for the FP operands are available, even though they are not shown in
the illustration. A bypass is reasonable if it does not have a significant impact on clock frequency
and if it does not use circuitry that can predict the future.

format


immed


IR


Addr

25:21


20:16


IF
 EX
 WB
MEM


rsv


rtv


IMM


NPC


ALU
Addr


Data


Data


Addr

D In


+1


PC


Mem


Port


Addr


Data


Out


Addr


Data


In


Mem


Port


Data


Out
rtv


ALU


MD


dst
 dst
 dst

Decode


dest. reg


NPC

Int Reg File


FP Reg File


fd
fd


WF


Addr
 Data


D In
WE


Addr


Addr


Data


fsv


ftv


15:11


20:16
 M6


we
 we


Decode


dest. reg


ID


A4


fd


we


fd


we


A3
A2
A1


M3
 M4
 M5


xw


fd


we


xw


fd


we


xw


M2

M


1


xw
 xw


fd


we


uses FP mul


uses FP add


FP load


Stall


ID


"0"

"2"

"1"


30
 2

"0"


+

15:0


29:0


0


1


2


LOOP:

ldc1 f0, 0(r1)

mul.d f2, f0, f4

add.d f6, f6, f2

bne r1, r2, LOOP

addi r1, r1, 8

(a) Show a pipeline execution diagram covering enough iterations to compute the CPI. Don’t forget
to check code for dependencies.

(b) Compute the CPI.

(c) Remember, that some bypass paths are assumed present though not illustrated. Add the needed
paths to the implementation and show when they are used.

1

http://www.ece.lsu.edu/ee4720/


Problem 2: Precise exceptions are necessary for integer instructions, but only Nice To Have for
floating-point instructions. Suppose exception conditions, such as overflow, were detected in A4

and M6 in the pipeline from the previous problem.

mul.d f2, f0, f4

add.d f6, f6, f2

and r3, r3, r5

addi r1, r1, 8

(a) For the code fragment above, would a mul.d exception detected in M6 be precise? Explain
in terms of architecturally visible storage (register and memory values) when the handler starts.
(Note that in general exceptions detected in M6 would not be precise, but the question is only asking
about the fragment above.)

(b) For the code fragment above, would a add.d exception detected in A4 be precise? Explain in
terms of architecturally visible storage when the handler starts.

2



Problem 3: The MIPS implementation below has a fully pipelined FP add unit. Replace the FP
add unit with one that has an initiation interval of 2 and a total computation time of 4 cycles.
Note that the time to compute a floating point sum is the same on the original and replacement
adder.

format


immed


IR


Addr

25:21


20:16


IF
 EX
 WB
MEM


rsv


rtv


IMM


NPC


ALU
Addr


Data


Data


Addr

D In


+1


PC


Mem


Port


Addr


Data


Out


Addr


Data


In


Mem


Port


Data


Out
rtv


ALU


MD


dst
 dst
 dst

Decode


dest. reg


NPC

Int Reg File


FP Reg File


fd
fd


WF


Addr
 Data


D In
WE


Addr


Addr


Data


fsv


ftv


15:11


20:16
 M6


we
 we


Decode


dest. reg


ID


A4


fd


we


fd


we


A3
A2
A1


M3
 M4
 M5


xw


fd


we


xw


fd


we


xw


M2

M


1


xw
 xw


fd


we


uses FP mul


uses FP add


FP load


Stall


ID


"0"

"2"

"1"


30
 2

"0"


+

15:0


29:0


0


1


2


The new adder has two stages, A1 and A2, each has two inputs (like their fully pipelined
counterparts), and each has two outputs. In the first cycle of computation the source operands are
placed at the inputs to A1, in the second cycle of computation the values at the outputs of A1 at
the end of the first cycle are placed at the inputs to A1. In the third cycle the values at the outputs
of A1 at the end of the second cycle are placed at the inputs A2, and in the fourth cycle the inputs
to A2 are the values at the outputs of A2 at the end of the third cycle. The sum is available from
the upper output of A2 at the end of the fourth cycle.

(a) Replace the FP adder datapath with the one described above.

(b) Modify the control logic for the new adder. Be sure to account for the structural hazard when
there are two consecutive FP add instructions.

3


