
Name Solution

Computer Architecture

EE 4720

Midterm Examination

Friday, 27 March 2009, 11:40–12:30 CDT

Alias Blue sunset?

Problem 1 (30 pts)

Problem 2 (30 pts)

Problem 3 (10 pts)

Problem 4 (20 pts)

Problem 5 (10 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: [30 pts] The code below executes on the illustrated FP pipeline.

format

immed

IR

Addr

25:21

20:16

IF
 EX
 WB
MEM

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst

Decode

dest. reg

NPC

Int Reg File

FP Reg File

fd
fd

WF

Addr
 Data

D In
WE

Addr

Addr

Data

fsv

ftv

15:11

20:16
 M6

we
 we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3
A2
A1

M3
 M4
 M5

xw

fd

we

xw

fd

we

xw

M2

M

1

xw
 xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"

"2"

"1"

30
 2

"0"

+

15:0

29:0

0

1

2

LOOP:

ldc1 f0, 0(r1)

addi r1, r1, 8

mul.d f2, f0, f0

bneq r1, r2, LOOP

add.d f6, f6, f2

(a) Add reasonable bypass paths needed by the code above, for both the integer and FP pipelines.

�Add reasonable bypass paths. Don’t add unneeded bypass paths.

See discussion in the next part.

2

(b) Analyze the performance of the code using your bypasses:

� Show a PED for the code above using your bypasses. (Use this page or next page.)

The PED appears below. Three additional bypasses are needed for the code below. In cycle 4 mul.d uses two bypasses, from WF to
M1, for the value loaded by ldc1. Also in cycle 4, bneq uses a bypass from ME to ID. In cycle 10 the add.d uses a bypass from
WF to A1 (this would be one of the bypasses to mul.d).

SOLUTION

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ldc1 f0, 0(r1) IF ID EX ME WF

addi r1, r1, 8 IF ID EX ME WB

mul.d f2, f0, f0 IF ID M1 M2 M3 M4 M5 M6 WF

bneq r1, r2, LOOP IF ID EX ME WB

add.d f6, f6, f2 IF ID ----------> A1 A2 A3 A4 WF

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ldc1 f0, 0(r1) IF ----------> ID EX ME WF

addi r1, r1, 8 IF ID EX ME WB

mul.d f2, f0, f0 IF ID M1 M2 M3 M4 M5 M6 ..

bneq r1, r2, LOOP IF ID EX ME WB

add.d f6, f6, f2 IF ID ----------> ..

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ldc1 f0, 0(r1) IF ----------> ..

�Compute the CPI of the code for a large number of iterations.

The iteration starting at cycle 5 and 14 start with the pipeline in the same state (ldc1 in IF, add.d in ID, bneq in EX, etc.) and
so the iteration starting at cycle 5 will match future ones. The iteration starting at cycle 5 takes 14 − 5 = 9 cycles and uses five
instructions, so the average instruction execution time is 14−5

5=1.8 CPI
.

3

Use this page for PED, if needed.

LOOP:

ldc1 f0, 0(r1)

addi r1, r1, 8

mul.d f2, f0, f0

bneq r1, r2, LOOP

add.d f6, f6, f2

4

Problem 1, continued:

(c) A component failure in the MIPS implementation below has changed the circled OR gate into an AND
gate.

format

immed

IR

Addr

25:21

20:16

IF
 EX
 WB
MEM

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst

Decode

dest. reg

NPC

Int Reg File

FP Reg File

fd
fd

WF

Addr
 Data

D In
WE

Addr

Addr

Data

fsv

ftv

15:11

20:16
 M6

we
 we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3
A2
A1

M3
 M4
 M5

xw

fd

we

xw

fd

we

xw

M2

M

1

xw
 xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"

"2"

"1"

30
 2

"0"

+

15:0

29:0

0

1

2

� Is it still possible to perform a FP multiply? If yes, show how with PED, if no explain.

Original Code. (For answer show modified code with PED.)

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

mul.d f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WF

nop IF ID EX ME WB

nop IF ID EX ME WB

Yes. First consider the original code with two nops added, above. In cycle 3 the mul.d is in M2, the circled gate will have a 1

input from the M1/M2.we latch and a 0 input from the uses FP add logic, and so its output will be zero, snuffing out the mul.d
instruction.

Now consider the code execution below in which the second nop is changed to an add.d. In cycle 3 the mul.d in M2 will be
“helped” by the add.d in ID and so the output of the circled gate will be 1; with this help the mul.d will complete normally.

The add.d stalls in ID in cycle 3 (as it should) but in cycle 4 it suffers the same problem as the mul.d in the original code: the
we signal is 0 when it should be a 1. As a result the add.d will not finish completely. All other logic is working correctly so there
is no way to “fix” the add.d’s we signal in the later stages and so there is no way the add.d can finish.

SOLUTION Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

mul.d f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WF

nop IF ID EX ME WB <- Other insns would work.

add.d f8, f2, f4 IF ID -> A1 A2 A3 A4 WF <- Let mul go through.

� Is it still possible to perform a FP add? If yes, show how with PED, if no explain.

5

Original Code. (For answer show modified code with PED.)

add.d f0, f2, f4

No. See the solution to the previous part.

6

Problem 2: [30 pts] The MIPS-A ISA is like MIPS-I except that load and store instructions use only the
rs register value for an address, they don’t add an offset (or anything else). As a result MIPS-A can be
implemented with a four-stage pipeline.

(a) Our familiar 5-stage MIPS-I implementation appears below with one of the pipeline latches missing.
Make additional changes so that this is a reasonable four-stage implementation of MIPS-A.

� Show all connections to the memory port.

�Cross out wires and other items that are not needed, add what is needed.

The memory port address input should be connected to the output of the upper ALU mux. The bypass connections that used to be
from ME should be removed. Ask for a diagram if needed!

format

immed

IR

Addr

25:21

20:16

IF
 ID
 EX
 WB
ME

rsv

rtv

IMM

NPC

Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out

ALU

MD

dst
 dst

Decode

dest. reg

NPC

=

30
 2

2’b0

+

15:0

25:0

29:26

29:0

0
 1

15:0

(b) Describe two ways in which this MIPS-A implementation costs less than the five-stage MIPS-I.

�Two reasons for lower cost.

Reason 1: No ME to EX bypass connections (including the wires themselves, multiplexor inputs and control logic). Reason 2: No
EX/ME pipeline latches.

7

Problem 2, continued:

(c) The four-stage MIPS-A implementation may be faster or slower than the five-stage MIPS-I.

�Provide a pair of equivalent code fragments, one for MIPS-I that runs on the five-stage implementation and
one for MIPS-A that runs on the four-stage, in which the MIPS-A version is faster. Hint: The MIPS-I code

will have a familiar stall.

Because the memory port and ALU are in the same stage the MIPS-A implementation can bypass a load value to the next instruction,
avoiding a stall that occurs in MIPS-I. See the two code fragments. Note that the fact that WB occurs in four rather than five cycles
of IF is not in itself a performance advantage, the advantage is in avoiding the stall.

SOLUTION

MIPS-I

lw r1, 0(r2) IF ID EX ME WB

add r3, r1, r4 IF ID -> EX ME WB

MIPS-A

lw r1, (r2) IF ID EM WB

add r3, r1, r4 IF ID EM WB

�Provide a pair of equivalent code fragments, one for MIPS-I that runs on the five-stage implementation and
one for MIPS-A that runs on the four-stage, in which the MIPS-A version is slower. Hint: Think about the

difference in the ISAs.

MIPS-A will have to perform additions to retrieve data at an offset (small distance) from some base address, something that MIPS-I
can avoid. See the examples below.

SOLUTION

MIPS-I

lw r3, 0(r2)

lw r4, 4(r2)

MIPS-A

lw r3, (r2)

addi r2, r2, 4

lw r4, (r2)

(d) A company needs to decide whether to develop MIPS-I or MIPS-A. How does it decide? Assume that
at this point software compatibility is not an issue.

�How should company decide which to develop?

Benchmarks based on customers’ workloads should be analyzed to determine how often loads ands stores use non-zero offsets and
how often a load/use stall cannot be avoided. If there are more unavoidable load/use stalls than non-zero offsets then MIPS-A might
be better, otherwise MIPS-I might be better.

�Will having skilled compiler writers tilt the decision towards MIPS-A or MIPS-I? Explain.

MIPS-I, because the compiler can schedule to avoid load/use stalls, but there is little the compiler can do to avoid using offsets in
most cases.

8

Problem 3: [10 pts] Answer the questions below.

(a) Why does MIPS have a beq but does not have a blt (branch less than), even though a blt instruction
would be frequently used?

�Why beq but no blt?

Because the magnitude comparison needed for blt would take more time than the equality comparison needed for beq, long enough
to lengthen the critical path.

(b) Explain why a branch delay slot can be though of as a short-sited feature in an ISA.

�Delay slots are good when...

The implementation has five stages and is scalar. Execution proceeds without a stall or squash whether or not a branch is taken
(assuming no difficult dependencies).

� ...but delay slots are bad when...

The implementation is superscalar or deeper than five stages (roughly). In that case more than one instruction will be fetched by the
time a branch is resolved and so instructions will have to be squashed. The benefit is smaller, but all of the complexity is still there.

9

Problem 4: [20 pts] The doing-it-the-hard-way MIPS code below loads the constant 1

3
in IEEE 754

single-precision format, 0x3eaaaaab, into register f2.

addi r10, r0, 1

addi r20, r0, 3

mtc1 f12, r10

mtc1 f22, r20

cvt.s.w f14, f12

cvt.s.w f24, f22

div.s f2, f14, f24

(a) Describe what the mtc1 and cvt.s.w instructions do.

�Explain mtc1

Move to co-processor 1. This moves the value in r10 to f12. It only moves it, it does not do format conversion.

�Explain cvt.s.w

Convert word (32-bit integer) to single (IEEE 754 single-precision floating point).

(b) The code above uses more instructions than are necessary and also uses a wastefully time-consuming
instruction.

�What is the wastefully time-consuming instruction?

The divide, div.s. It’s time-consuming because it’s a divide, it’s wasteful because it’s computing something at run time that could
have been computed at compile (or assembler-writing) time. See the next part.

�Re-write the code so it uses fewer instructions without using load instructions. Hint: A correct answer uses

three instructions and a piece of information slipped into the first sentence of the problem.

Rather than computing it, just load the pre-computed FP value of 1

3
into a register:

Solution

lui r10, 0x3eaa

ori r10, r10, 0xaaab

mtc1 f2, r10

10

Problem 5: [10 pts] Answer the following SPECcpu questions.

(a) In the SPECcpu2000 suite profiling was allowed for both base and peak results but in SPECcpu2006
profiling is allowed for peak results but not for base results.

�Why isn’t profiling allowed for base results in SPECcpu2006? Your answer should say something about the
difference between base and peak.

The base results should reflect the performance attainable with normal effort. Profiling requires selecting a training set, compiling
the program with instrumentation on, running the code on the training set, then re-compiling. Most programmers don’t go to so
much trouble.

(b) Company A has a reputation for reliable compilers, company B has a reputation for buggy compilers.
Both companies and their customers are okay with this. (Think Italian sports cars.)

Optimization X results in a substantial improvement in SPECcpu base scores. Company B has it in their
shipping compilers (those sold to customers) but company A only has optimization X in their experimental
compilers (not available to customers), but they are working hard on it. The optimization achieves the same
results for company A and B. Company B’s compiler will not run on company A’s system (as though they’d
want to!). Grading Note: The last line was not in the original exam, but a student did see the possibility of

using B’s compiler for A’s spec run.

�Can Company A use optimization X to prepare SPECcpu2006? Explain.

No, because they do not sell the compiler as a product.

�Can Company B use optimization X to prepare SPECcpu2006? Explain.

Yes, because the compiler is a product.

�Your answers above should reflect the letter of SPEC’s rules. Do you think this achieves SPECcpu’s goals
or what you would like to see in benchmark results? Explain.

Yes, because SPECcpu does not claim to measure factors other than performance, such as cost, power consumption, or reliability.
A person deciding between Company A and Company B’s systems would balance the performance as measured by the SPECcpu
numbers against the companies’ reputations for quality. If A and B used the same compiler there would be no way to make this
judgment.

11

