
LSU EE 4720 Homework 1 Solution Due: 27 February 2009

Problem 1: Answer each question.

(a) Explain why the code below won’t finish running.

LOOP:

lw r1, 0(r2)

xor r3, r3, r1

bne r2, r4 LOOP

addi r2, r2, 2

The lw effective address must be a multiple of four (the address alignment restriction) but it can’t always be in the
code fragment above since r2 is incremented by 2 each iteration. The code won’t finish because the lw will raise some
kind of address misalignment exception at either the first or second iteration.

(b) Shorten the code below.

lui r1, 0x1234

ori r1, r1, 0x5678

lw r1,0(r1)

Solution

lui r1, 0x1234

lw r1,0x5678(r1)

(c) Shorten the code below.

xor r1, r2, r3

beq r1, r0 TARG

addi r1, r4, 1

In the code above r1 will be zero only if r2 is equal to r3, so there is no need for the xor. Note: In the original
assignment the last instruction did not modify r1, so one could not safely remove the xor.

Solution.

beq r2, r3 TARG

addi r1, r4, 1

1

http://www.ece.lsu.edu/ee4720/

Problem 2: Consider the execution code below on the illustrated implementation.

LOOP:

lw r2, 0(r4)

slt r1, r2, r3

beq r1, r0 LOOP

addi r4, r4, 4

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

(a) Determine the execution rate in IPC (instructions per cycle) assuming a large number of itera-
tions. Use a pipeline execution diagram to justify your answer. (No credit without one.)

LOOP:

Solution

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

lw r2, 0(r4) IF ID EX ME WB

slt r1, r2, r3 IF ID -> EX ME WB

beq r1, r0 LOOP IF -> ID ----> EX ME WB

addi r4, r4, 4 IF ----> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

lw r2, 0(r4) IF ID EX ME WB

slt r1, r2, r3 IF ID -> EX ME WB

beq r1, r0 LOOP IF -> ID ----> EX ME WB

addi r4, r4, 4 IF ----> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

lw r2, 0(r4) IF ID EX ME WB

...

The code suffers two stalls, the first because the slt needs the lw value and the second (a two-cycle stall) because
the beq needs the slt value. Iterations start (first instruction of the loop is in IF) in cycles 0, 7, and 14. Since the
pipeline is in the same state in cycles 7 and 14 (lw in IF, addi in ID, and beq in EX) we can expect the iteration that

2

starts at 14 to be identical to the one that starts at 7. The time for these iterations is 14 − 7 = 7 cycles, and so the
execution rate is 4

7
IPC(or if you prefer, the instruction initiation interval is 7

4
CPI).

(b) If the previous part was solved correctly there should be a stall due to the branch. Add a bypass
path to avoid the branch stall.

The added bypass path appears below in blue. This bypass path eliminates the stall but would likely lower the clock
frequency. (See the next problem.)

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

LOOP:

Solution - Execution with the bypass.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

lw r2, 0(r4) IF ID EX ME WB

slt r1, r2, r3 IF ID -> EX ME WB

beq r1, r0 LOOP IF -> ID EX ME WB

addi r4, r4, 4 IF ID EX ME WB

(c) Why might the added bypass path impact clock frequency?
The slt at the ALU output would be ready late in the cycle, and these signals would still have to pass through the

ID-stage comparison unit, then some control logic, the IF-stage mux, finally reaching the PC input. Since it’s reasonable
that the critical path passed through the ALU without this bypass, adding the bypass would increase the critical path and
therefore reduce clock frequency. (A solution that bypassed from ME to ID would not impact clock frequency [unless it
were taken from the memory port output] but it would only reduce the number of stall cycles from 2 to 1.)

(d) Suppose the clock frequency of the original pipeline were 1GHz, and call the clock frequency of
the added-bypass implementation φ. For what value of φ will the run time of the code fragment be
the same on the original and added-bypass implementations (assuming a large number of iterations).

Without the bypass the code executes at 4

7
1 GHz IPS (instruction per second). With the bypass the code will

execute at a rate of 4

5
IPCor 4

5
φ IPS. Solving 4

7
1 GHz = 4

5
φ yields φ = 5

7
GHz.

3

(e) Suppose a blt (branch less than) instruction was available that could compare two registers
(not just a register to zero). Re-write the code above for this instruction and add bypasses that are
no worse than the added-bypass bypass. How would the performance of this blt implementation
on the re-written code fragment compare to the added-bypass implementation on the original code
fragment? Assume both systems have the same clock frequency.

The bypass needed for this part would be from ME to ID, since one value to compare arrives at through memory
port. The execution rate of the original code on the bypassed pipeline is 5 cycles per loop iteration. The code with blt
still suffers one stall and so executes at 4 cycles per iteration (see diagram below). The net result is improved performance.

Note that the speedup (performance ratio) is 5

4
= 1.25 while the improvement in IPC is only 4/5

3/4
= 1.0667.

Solution: Code using blt

LOOP:

lw r2, 0(r4) IF ID EX ME WB

blt r2, r3 LOOP IF ID -> EX ME WB

addi r4, r4, 4 IF -> ID EX ME WB

4

	Problem 1
	Part char 97
	Part char 98
	Part char 99

	Problem 2
	Part char 97
	Part char 98
	Part char 99
	Part char 100
	Part char 101

