
LSU EE 4720 Homework 1 Solution Due: 29 September 2008

To answer the first question below see the MIPS32 Architecture manual linked to the course

references page.

Problem 1: The MIPS I bgtz and bltz instructions compare a register to zero, but can’t compare
two registers (unless the second one is the zero register). Consider an extension of MIPS I that
allowed branch greater than and branch less than instructions to compare two registers, call the
new instructions bgt and blt. Explain why the existing bgtz opcode could be used for bgt but
why the bltz opcode could not be used for blt. Hint: See bltzal.

The opcode for bgtz is 0x07 and the value that the ISA specifies for the rt field is 0. Assuming that no
other instruction uses opcode 0x07, the rt field could be used for the second comparison register. (This would not be
incompatible with its current use because in its current use it is comparing the rs register to 0 so it wouldn’t matter if
rt held a register number.)

In the bltz instruction the rt field is being used as an extension of the opcode field and so it cannot be used for
a register number. A new blt instruction would need its own opcode.

1

http://www.ece.lsu.edu/ee4720/

Problem 2: A C function and a part of a MIPS equivalent are shown below. The C function looks
at the attributes of a car and decides what to pack in a promotional giveaway to the car buyer.
The assembler code corresponds to the C function up until the last line (checking for a sun roof).

#define FE_SPORTY 0x1

#define FE_OFF_ROAD 0x2

#define FE_EFFICIENT 0x4

#define FE_SUN_ROOF 0x10000

#define FE_MANUAL_TRANSMISSION 0x20000

enum Giveaways { G_Food, G_Hiking_Boots, G_Sunblock, G_Driving_Gloves };

void prepare_promotion_package(Car_Object *car) {

int car_features = car->features;

if (car_features & FE_OFF_ROAD) pack(car, 1200, G_Hiking_Boots);

if (car_features & FE_SUN_ROOF) pack(car, 200, G_Sunblock);

}

MIPS-I Equivalent of C code.

#

$a0: Address of car object.

Notes: Procedure call arguments placed in $a0, $a1, ...

Assume that pack does not change $a0-$a3 or $s0-$s7

lw $s0, 16($a0) # Load the features bit vector of car object.

andi $t0, $s0, 2

beq $t0, $0 SKIP1

addi $a1, $0, 1200

jal pack

addi $a2, $0, 1

SKIP1:

PART b SOLUTION STARTS HERE

2

(a) The MIPS code above omits the last line of C code (checking for a sun roof); complete it using
MIPS I instructions. (Do this on paper, there is no need to run it.) Hint: A clever solution uses five

instructions a straightforward solution uses six instructions. If you have more than ten instructions

ask for help.

The solution appears below.

This would be an insultingly trivial problem were it not for the fact that an andi instruction can’t be used to mask
off the FE SUN ROOF bit because the constant, 0x10000, is too large for the immediate field.

The solution uses an sll (shift left logical) instruction instead of an andi instruction to move the sun roof bit to
the most significant bit position, making it into a sign bit. Replacing beq with bgez achieves the desired functionality.

MIPS-I Equivalent of C code.

#

$a0: Address of car object.

Notes: Procedure call arguments placed in $a0, $a1, ...

Assume that pack does not change $a0-$a3 or $s0-$s7

lw $s0, 16($a0) # Load the features bit vector of car object.

andi $t0, $s0, 2 # Extract OFF_ROAD bit from vector.

beq $t0, $0 SKIP1 # If OFF_ROAD bit not set, skip ahead.

addi $a1, $0, 1200 # Arg 1: Promotional item weight

jal pack # Insert promotional item in Car_Object

addi $a2, $0, 1 # Arg 2: Promotional item model number.

SKIP1:

PART b SOLUTION STARTS HERE

SOLUTION BELOW

#

sll $t0, $s0, 15 # Make SUN_ROOF bit the sign bit.

bgez $t0 SKIP2 # If SUN_ROOF not set (t0 >=0) skip ahead.

addi $a1, $0, 200 # Arg 1: Promotional item weight.

jal pack # Insert promotional item in Car_Object

addi $a2, $0, 2 # Arg 2: Promotional item model number.

SKIP2:

(b) Add comments to the assembler code above. Write the comments for an experienced MIPS
and C programmer, that is, the comments should describe what an instruction is doing in terms of

what the C code is trying to do. The comments should not just describe how instructions change
register values.

For example, a bad comment for the lw instruction would be: Compute address 16 + $a0, retrieve
word starting at that address and write into $s0. This is a bad comment because an experienced MIPS
programmer already knows what an lw instruction does. The comment for lw in the code (Load
the features. . .) is good because it tells the reader what the $s0 value is in terms of what the code is
supposed to do.

The comments have been added to the solution code above.

Grading Notes: Many solutions included something like the following comment for the jal pack routine: “Save
the return address and call the pack routine.” Points were deducted for such comments because an experienced MIPS
programmer, and even beginners, already know what jal does. Comments like that increase the amount of time it takes
someone to read (and write) the code.

3

Problem 3: Consider the code from the previous problem. Invent a new branch instruction that
can be used for the kind of branching used in the code: testing if a single bit in a register value is
1.

(a) Show the encoding for the new branch instruction. The new instruction must fit as naturally
as possible with other instructions.

Call the new instruction bbit, branch if bit set. The rs register has the value to test and the rt field holds the
bit number in the rs value to test. The immed field holds the displacement which is used like the displacement in any
other branch.

In the example assembler below the branch is taken if bit position 16 in register s0 is 1. (This instruction could
have been used in the first problem).

bbit $s0, 16, SKIP2

The encoding appears below:

MIPS I:

Opcode

31 26

RS

Source reg.

25 21

RT

Bit position.

20 16

Immed

Displacement

15 0

(b) Compare the implementation cost and performance of the new instruction to the existing MIPS-
I bltz and to a hypothetical blt instruction. (With each instruction doing its own thing, not as
part of functionally equivalent alternatives.)

Cost of bbit: A 32 × 1 bit multiplexer could be used to extract the desired bit position. The logic for that mux
would implement the expression

b0p4 p3 p2 p1 p0 + b1p4 p3 p2 p1 p0 + b2p4 p3 p2 p1p0 · · · + b31p4p3p2p1p0

where bi is the bit at position i in the rs register value, and pj , 0 ≤ j < 5 is the bit at position j in the binary
representation of rt (the field value, not the register value).

Cost of blt: A magnitude comparison unit is needed, the complexity of which is similar to an adder (or subtractor).
Since it must be made fast, the cost would be comparable to the adder in the ALU. A ripple adder (or subtractor) is
one of the least expensive designs, that requires about five gates per bit (counting an exclusive or as one gate). The
higher-speed design would cost more.

The bbit logic could use a single six-input gate per bit (a term in the expression above), but to be conserva-
tive one might count it as five two-input gates. This cost is comparable to that of a binary full subtractor and so is
certainly lower than the cost of the lookahead subtractor needed by blt to perform the comparison in ID. Therefore

the cost of the hardware needed for bbit is less than the hardware needed for blt .
The bit test logic is two levels though it has a large fan in. The number of logic levels for the comparison depends

on cost but is certainly greater than two levels. Therefore the bbit logic is probably faster than blt .

The bltz instruction only needs to test the sign bit, so the hardware cost of bltz is lower than bbit and blt

and the logic for bltz is much faster than bbit and blt .

Problem 4: Solve Fall 2007 Homework 2 without looking at the solution. Then look at the
solution and give yourself a grade on a scale of [0, 1]. Warning: test questions are based on the
assumption that homework problems were completed, so make a full effort to solve it without first
consulting the solution.

4

	Problem 1
	Problem 2
	Part char 97
	Part char 98

	Problem 3
	Part char 97
	Part char 98

	Problem 4

