
LSU EE 4720 Homework 1 Due: 29 September 2008

To answer the first question below see the MIPS32 Architecture manual linked to the course

references page.

Problem 1: The MIPS I bgtz and bltz instructions compare a register to zero, but can’t compare
two registers (unless the second one is the zero register). Consider an extension of MIPS I that
allowed branch greater than and branch less than instructions to compare two registers, call the
new instructions bgt and blt. Explain why the existing bgtz opcode could be used for bgt but
why the bltz opcode could not be used for blt. Hint: See bltzal.

Problem 2: A C function and a part of a MIPS equivalent are shown below. The C function looks
at the attributes of a car and decides what to pack in a promotional giveaway to the car buyer.
The assembler code corresponds to the C function up until the last line (checking for a sun roof).

#define FE_SPORTY 0x1

#define FE_OFF_ROAD 0x2

#define FE_EFFICIENT 0x4

#define FE_SUN_ROOF 0x10000

#define FE_MANUAL_TRANSMISSION 0x20000

enum Giveaways { G_Food, G_Hiking_Boots, G_Sunblock, G_Driving_Gloves };

void prepare_promotion_package(Car_Object *car) {

int car_features = car->features;

if (car_features & FE_OFF_ROAD) pack(car, 1200, G_Hiking_Boots);

if (car_features & FE_SUN_ROOF) pack(car, 200, G_Sunblock);

}

MIPS-I Equivalent of C code.

#

$a0: Address of car object.

Notes: Procedure call arguments placed in $a0, $a1, ...

Assume that pack does not change $a0-$a3 or $s0-$s7

lw $s0, 16($a0) # Load the features bit vector of car object.

andi $t0, $s0, 2

beq $t0, $0 SKIP1

addi $a1, $0, 1200

jal pack

addi $a2, $0, 1

SKIP1:

PART b SOLUTION STARTS HERE

(a) The MIPS code above omits the last line of C code (checking for a sun roof); complete it using
MIPS I instructions. (Do this on paper, there is no need to run it.) Hint: A clever solution uses five

instructions a straightforward solution uses six instructions. If you have more than ten instructions

ask for help.

1

http://www.ece.lsu.edu/ee4720/

(b) Add comments to the assembler code above. Write the comments for an experienced MIPS
and C programmer, that is, the comments should describe what an instruction is doing in terms of

what the C code is trying to do. The comments should not just describe how instructions change
register values.

For example, a bad comment for the lw instruction would be: Compute address 16 + $a0, retrieve

word starting at that address and write into $s0. This is a bad comment because an experienced MIPS
programmer already knows what an lw instruction does. The comment for lw in the code (Load

the features. . .) is good because it tells the reader what the $s0 value is in terms of what the code is
supposed to do.

Problem 3: Consider the code from the previous problem. Invent a new branch instruction that
can be used for the kind of branching used in the code: testing if a single bit in a register value is
1.

(a) Show the encoding for the new branch instruction. The new instruction must fit as naturally
as possible with other instructions.

(b) Compare the implementation cost and performance of the new instruction to the existing MIPS-
I bltz and to a hypothetical blt instruction. (With each instruction doing its own thing, not as
part of functionally equivalent alternatives.)

Problem 4: Solve Fall 2007 Homework 2 without looking at the solution. Then look at the
solution and give yourself a grade on a scale of [0, 1]. Warning: test questions are based on the
assumption that homework problems were completed, so make a full effort to solve it without first
consulting the solution.

2

