
Name

Computer Architecture

EE 4720

Final Examination

9 December 2008, 17:30–19:30 CST

Alias

Problem 1 (10 pts)

Problem 2 (15 pts)

Problem 3 (20 pts)

Problem 4 (15 pts)

Problem 5 (20 pts)

Problem 6 (20 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: (10 pts) Consider a new floating point instruction nin.d which uses a 5-stage computation
unit, N1 - N5 (in contrast to FP add’s A1-A4). The format and register usage for nin.d is the same as
the other FP arithmetic instructions. Modify the implementation below so that it can execute nin.d. Hint:

This is an easy question, nin.d is just like the FP add and multiply, except it’s 5 stages.

Add the datapath components, including the functional unit stages (N1 to N5).

Add control logic for proper write-float and structural hazard detection (as is already present for add
and multiply). Be sure not to break existing instructions.

The changes must fit in efficiently with what is already present.

format

immed

IR

Addr

25:21

20:16

IF
 EX
 WB
MEM

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst

Decode

dest. reg

NPC

Int Reg File

FP Reg File

fd
fd

WF

Addr
 Data

D In
WE

Addr

Addr

Data

fsv

ftv

15:11

20:16
 M6

we
 we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3
A2
A1

M3
 M4
 M5

xw

fd

we

xw

fd

we

xw

M2

M

1

xw
 xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"

"2"

"1"

30
 2

"0"

+

15:0

29:0

0

1

2

2

Problem 2: (15 pts) With the MIPS implementation illustrated below floating-point add and multiply
instructions do not raise precise exceptions. If a programmer needs a precise exception for a particular FP
instruction he or she can follow it with a test (test for exception) instruction. In the code below test is
used to provide a precise exception for mul.d.

mul.d f2, f2, f6

test

sub.d f16, f14, f20

The test instruction will stall in ID for the minimum number of cycles necessary to ensure a precise exception
and will suppress a WF if necessary.

(a) Add hardware to implement the test instruction. The output of is test is 1 if a test instruction is
in ID. Assume there are A4 and M6 outputs that indicate whether an exception was raised. These can be
checked in the middle of the cycle.

Add control logic to stall the pipeline using a new input to the Stall ID or gate. Hint: Very little logic

is needed.

Add logic to suppress WF when necessary.

The hardware should work correctly for floating-point multiplies and adds.

format

immed

IR

Addr

25:21

20:16

IF
 EX
 WB
MEM

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst

Decode

dest. reg

NPC

Int Reg File

FP Reg File

fd
fd

WF

Addr
 Data

D In
WE

Addr

Addr

Data

fsv

ftv

15:11

20:16
 M6

we
 we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3
A2
A1

M3
 M4
 M5

xw

fd

we

xw

fd

we

xw

M2

M

1

xw
 xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"

"2"

"1"

30
 2

"0"

+

15:0

29:0

0

1

2

is test

3

Problem 2, continued:

(b) Show an example in which, in a faulty implementation, the test instruction stalls one less than the
minimum number of cycles and as a result an exception is not precise.

Example code and pipeline execution diagram, including fetch of first handler instruction.

Explain why the exception is not precise.

4

Problem 3: (20 pts) The code below has two branches, branch B1 implements a 3-iteration loop with
outcome pattern T T N T T N· · ·. The outcome pattern for branch B2 is shown below. Note that B1 executes

three times for each execution of B2.

The code runs on three systems, the branch predictor on all systems uses a 214-entry BHT. One system
has a bimodal predictor, one system uses a local history predictor with a 10-outcome local history, and one
system uses a global predictor with a 10-outcome global history.

BIGLOOP: Note: B1 and B2 are the only branches in this code.

T1:

B1: bne r3, r4 T1 .. 3 iteration loop ..

.. no CTIs ..

B2: beq r1, r2 T2 N N N T N N T N N N T N N T N N N T N N T N N N T N N T ...

T2:

j BIGLOOP

What is the accuracy of the bimodal predictor on branch B2 after warmup?

What is the accuracy of the local predictor on branch B2 after warmup?

What is the size of the BHT and PHT, in bits, needed to implement the local predictor? Only take into
account the storage need for the branch predictor, omit things like CTI type.

What is the minimum local history size needed to achieve 100% accuracy on branch B2 using the local
predictor? Explain.

What is the minimum global history size needed to achieve 100% accuracy on branch B2 using the global
predictor? Explain.

5

Problem 4: (15 pts) Consider two alternatives for improving the performance of our familiar scalar 5-stage
implementation: an n-way superscalar implementation or a 5n-stage superpipelined implementation.

(a) Both systems can potentially reduce execution time by a factor of n. Explain how this is achieved for each
system in terms of CPI (cycles per instructions), clock frequency, and other relevant factors. The answers
might read, “Because of . . . the CPI is x

2 times larger which causes . . . but . . . and so overall execution is n

times faster.”

Explain how the superscalar system is potentially n times faster.

Explain how the superpipelined system is potentially n times faster.

(b) Bypass paths add substantially to the cost of sufficiently large superscalar systems. Provide expressions
in terms of n for the cost of bypass paths in both systems. Briefly justify your answers, using a diagram if
necessary.

Expression for the cost of bypass paths in superscalar systems, with quick diagram and brief description.

Expression for the cost of bypass paths in superpipelined systems, with quick diagram and brief descrip-
tion.

(c) Ideally the 5n-stage superpipelined system would have a speedup of n (the scalar system would take n

times longer than the superpipelined system to run a program). Consider a program that has no nearby
dependencies so that the superpipelined system does not have to stall.

Explain why the speedup of the superpipelined system might be t0+t1

t0+
t1

n

, where the clock frequency of our

familiar scalar system is 1

t0+t1
.

Explain what t0 is likely to be.

6

Problem 5: (20 pts) The diagram below is for a 4-MiB (222-character) set-associative cache with a line
size of 512 (29) characters, with the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=
Tag

Valid

Data

 Addr

Tag

 Addr

=
Tag

Valid

Hit

Out

Out

Out

32 b

64 b

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Associativity:

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

7

Problem 5, continued:

(b) The code below runs on the cache from the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

What is the hit ratio running the code below? Explain

double sum = 0.0;

short *a = 0x2000000; // sizeof(short) = 2 characters.

int i;

int ILIMIT = 1 << 10; // = 210

for (i=0; i<ILIMIT; i++) sum += a[i];

(c) The code below runs on a direct mapped (not set-associative) cache with a line size of 512 characters
and a capacity of 4 MiB. Grading note: The cache size was omitted from the original problem.

Determine an address for b that will result in a 0% hit ratio when running the code below.

Briefly explain.

double sum = 0.0;

short *a = 0x2000000; // sizeof(short) = 2 characters.

short *b = <-- FILL IN

int i;

int ILIMIT = 1 << 10; // = 210

for (i=0; i<ILIMIT; i++) sum += a[i] + b[i];

8

Problem 6: (20 pts) Answer each question below.

(a) Describe restrictions (or lack of) on instruction addresses and the placement of instructions that distin-
guish RISC, CISC, and VLIW ISAs.

RISC address and placement restrictions.

Reason for each restriction (if any).

CISC address and placement restrictions.

Reason for each restriction (if any).

VLIW address and placement restrictions.

Reason for each restriction (if any).

9

(b) A feature of the SPECcpu benchmarks is that they come with source code and it is the tester’s re-
sponsibility to compile (and run) them. Note: “are these” in the questions below refers to source code and
compiling.

Are these necessary, important, or irrelevant for testing an implementation of a new ISA? (This is not
a yes-or-no question.) Explain.

Are these necessary, important, or irrelevant for testing a new implementation of an existing ISA?
Explain.

(c) A corrupt member of the committee choosing benchmarks for the next SPECcpu suite has successfully
bribed the other committee members so that the benchmarks that were selected favor the corrupt member’s
company.

How might this be discovered? Indicate who would discover the problem and what public information
draw their suspicion?

Can we expect those involved to be sufficiently motivated to correct the situation? Explain.

10

