
Name Solution

Computer Architecture

EE 4720

Midterm Examination

Monday, 10 March 2008, 12:40–13:30 CDT

Alias Well ARMed

Problem 1 (50 pts)

Problem 2 (20 pts)

Problem 3 (10 pts)

Problem 4 (20 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: In the MIPS implementation below some wires are labeled with cycle numbers and values that
will then be present. For example, c2:4 indicates that at cycle 2 the wire will hold a 4. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any labeled wire
is changed the code would execute incorrectly. Note that instruction addresses have been provided. [50 pts]

�Finish a program consistent with these labels.

�All register numbers and immediate values can be determined.

�Be sure to fill the two blocks marked Fill In.

�Provide an explanation for the EX-stage fill-in block.

format

immed

IR

Addr

25:21

20:16

IF
 ID
 EX
 WB
ME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst

Decode

dest. reg

NPC

=

30
 2

2’b0

+

15:0

25:0

29:26

29:0

0
 1

15:0

5‘b0

=0

=movn

c2:4

c8:6
 c5:4720

c4:1

c4:1

c5
 c6
c3:0x2000

c5

c3:3

c4:0x2011

c___:___

Fill in cycle number and

value.

c2:0x20a2000e = 0010 0000 1010 0010 0000 0000 0000 1110

c5:____

Fill in and explain:

c1:8

c1:8

0

1 12

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8

0x1000 beq r8, r8, 0x1034 IF ID EX ME WB

0x1004 lb r3, 0x11(r4) IF ID EX ME WB

0x1034 ADDi r2, r5, 14 IF ID EX ME WB

0x1038 movn r1, r2, r3 IF ID EX ME WB

0x103c ORi r6, r1, 4720 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8

Solution discussion on next page.

2

Solution Discussion

0x1000: This has to be some kind of control transfer because of the break in consecutive addresses after the next instruction (the
address of the third instruction is 0x1034 instead of 0x1008). The ID-stage fill-in points at the dedicated adder, which is used
only for branches (not jumps or traps). Therefore this instruction must be a branch, the cycle number on the fill in must be 1 (when
this instruction is in ID), and the value must be the displacement which is 0x1034−0x1004

4
= 12. (The displacement is the number

of instructions to skip starting at the delay-slot instruction which in this case is at address 0x1004.) The c1:8 bubbles tell us
the registers to use for comparison and also that it must be a beq. It can’t be a bne because the branch is taken and it can’t be a
branch such as bgtz because those branches only read one register value.

0x1004: The c4:0x2011 tells us this is a memory operation that operates on byte-sized data (since the address is not a multiple

of 4 or 2). The c3:3 tells us that it writes a destination register so it must be a load. The c2:4 reveals the source register and

c3:3 in EX provides the destination. The displacement, 0x11, is determined using c3:0x2000 in EX and c4:0x2011 in ME.

0x1034: The bubble in IF provides the encoded form of this instruction. It can’t be a type-J instruction because the last instruction
follows the penultimate one, and so it is either type-R or type-I. Either way, the rs register is r5 and the rt register is r2. If it

were a type-R the rd register would be r0 but since, as the c5 at the upper ALU mux indicates, the result is bypassed to another
instruction and so it can’t be type-R because r0 would not be bypassed. Therefore it’s a type-I. Unless one memorized MIPS opcodes
there is no way to determine exactly which type I instruction it is so any arithmetic instruction would be considered correct. The
opcode is for an addi.

0x1038: The lower c4:1 in ID provides the destination register, r1, and the one above that shows that this is a movn instruction.

The ALU c5 provides the rs register number, r2 from 0x1034, the rtv mux c5 provides the rt register number, r3 from the
0x1004 lb.

If the c5: EX-stage fill-in is 0 then the movn instruction completes the move, otherwise the destination register remains unchanged.
The instruction at 0x103c bypasses the movn destination, r1. This would only be correct if the movn was to write r1 and therefore
the fill-in value must be 0. (If the value were 1 the movn would not change r1 but the instruction at 0x103c would read the value
of r2 rather than r1.)

0x103c: The c5:4720 in ID provides the immediate, indicating that this must be a type-I instruction. The c6 in EX gives the

rs register, r1 from the movn. The c8:6 gives the destination register, r6. This can be any arithmetic type I instruction, ori is
assumed.

3

Problem 2: Answer the following questions about, or inspired by, ARM.

(a) [10 pts] MIPS lacks a counterpart to the ARM instruction shown below. Hint: This has nothing to do

with MIPS’ movn.

mov r1, #5 // Move the constant 5 to register r1.

�Explain how r0 makes such a MIPS instruction unnecessary.

You can use an addi instruction with r0 as the first source register.

� Show how to perform the same operation using MIPS instruction(s).

addi r1, r0, 5

(b) [5 pts] The ARM ISA states that the result of executing an instruction like str r15, [r1] is that either
PC+8 or PC+12 is stored in memory, depending on the implementation. (Remember that ARM r15 is an
alias for PC.)

�What is the benefit of making the result of the store implementation dependent?

Some implementations would be lower cost because they wouldn’t need to send a “correct” value of PC through the pipeline, instead
they would use the PC value of whatever instruction was being fetched when the store reached ME.

(c) [5 pts] Consider an ISA which stated that the number of branch delay slots could be either zero or one,
depending on the implementation.

�As an ISA feature, how does this delay-slot implementation dependence compare in practicality to ARM’s
store PC implementation dependent behavior?

The delay slot implementation dependence is a really bad idea because portable code (code that runs on any implementation of the
ISA) could not put anything other than a NOP in delay slots. Since branches are frequent the impact on performance would be large
(unless the code were compiled for a specific implementation). In contrast, the stored PC could always be added to a constant (-8 or
-12) to obtain the correct PC value. That would take a little extra time but storing the PC in memory using a store instruction is
not something programs need to do very often.

4

Problem 3: In RISC ISAs instructions are of fixed size, that is, all instructions are the same size. For
example, in MIPS, all instructions are 32 bits. The character size in MIPS (and all ISAs mentioned in this
test) is 8 bits.

(a) [5 pts] Describe a benefit of having fixed-size instructions. (This answer can be mentioned in the next
answer’s explanation.)

�Fixed-size instruction benefit for RISC.

Benefits: Instruction fetch is simple because the PC is incremented by a constant amount and instructions are fetched already properly
aligned (because instruction addresses are required to be a multiple of four).

(b) [5 pts] In the Itanium VLIW ISA all instructions are 41 bits. Why would 41-bit instructions be difficult or
wasteful to implement in a RISC ISA, such as MIPS, but cause no difficulties in VLIW ISA implementations,
including Itanium implementations.

�Forty-one bit RISC instructions difficult or wasteful because:

An instruction would use six bytes of memory, that would either waste 7 bits or else require having the end of one instruction and
the beginning of the next instruction together in one memory location. Branch targets would be harder to compute since one would
have to multiply by 6 (and that’s the space-wasting alternative). A multiply by six is just an add of two shifted values, but that’s
still one more trouble than just shifting a displacement.

�Forty-one bit VLIW instructions not wasteful and make sense because:

Fetch operates on 3-instruction bundles, which are 128 bits (16 bytes), and there is no way to jump to a middle of a bundle. There
is no wasted space because 128 − 3 × 41 = 5 bits are used to store dependency information. It is easy to compute displacement,
just shift left by 4 bits.

5

Problem 4: Answer the following compiler questions.

(a) [10 pts] A company is considering removing a bypass connection in a design of an implementation.
Analysis on good test programs shows that performance drops by 5% with the bypass removed (and no
other changes).

�What can compiler writers do about the performance drop?

They can re-do code scheduling so that the bypass is rarely used. For example, suppose the bypass is used when an sll uses the
result of a preceding lw. The compiler might place two (or whatever) instructions between the lw and sll.

(b) [10 pts] Dead-code elimination is a commonly used compiler optimization, while profiling is used less
often because it is a multi-step process.

�Using an example briefly describe dead-code elimination.

Solution:

x = a + b; // The compiler would produce no code for this line ...

x = c + d; // ... because this line overwrites the first x before it’s used.

�Briefly describe the steps used in profiling.

First, compile the program using a profile switch. Second, run the program on what is expected to be typical input data. The program
will write profile information. Third, compile again, this time telling the compiler to read the profile information.

�Which is more likely to result in disappointing results that surprise the programmer? Explain.

Profiling is more likely to disappoint because the “typical input data” chosen for the profiling run may not match what most end-users
use closely enough to get good profiling results. This might happen because there are many different inputs in common use and the
compiler would optimize differently for different inputs so no profile run would result in good performance on all, or even most, inputs.

6

