
LSU EE 4720 Homework 2 Due: 29 February 2008
For the answers to these questions look at the ARM Architecture Reference Manual linked to

the course references page, http://www.ece.lsu.edu/ee4720/reference.html.

Problem 1: The register fields in ARM instructions are four bits and so only 16 integer registers
are accessible. The ISA manual describes ARM as having 32 integer registers, however many of
them are only accessible in particular modes.

An advantage of fewer registers is that extra bits are available in the instruction encoding, for
example, ARM three-register instruction formats would have three more bits available than the
MIPS type R format. Where in the ARM formats do you think these bits went? In your answer
give the instruction field and its purpose. There should be no equivalent in MIPS.

Problem2: In MIPS an arbitrary 32-bit constant can be loaded into a register using a lui followed
by an ori. In ARM the immediate field for data-processing (integer) instructions is only 8 bits.

(a) Show ARM code to put an arbitrary 32-bit constant into a register without using a load
instruction. Use as few instructions as possible. Hint: take advantage of ARMS shift and rotate

capabilities.

(b) Show how ARM can put an arbitrary constant into a register with one load instruction, whereas
in MIPS two would be required. The MIPS code is shown below. Do not assume the address of
the constant is already in a register, that would make this problem insultingly easy! Hint: Use one

of ARM’s special purpose registers.

.text

lui r1, 0x1111

lw r1, 0x2220(r1)

... a few more instructions ..

jr $ra

nop

.data

my_32_bit_constant: # Address: 0x11112220

.word 0x12345678

http://www.ece.lsu.edu/ee4720/
http://www.ece.lsu.edu/ee4720/reference.html

Problem 3: In ARM the program counter is register r15, and so as far as instruction encoding
goes, is treated as a general-purpose register.

(a) Why would really keeping the program counter in the integer register file add to the cost of an
implementation?

(b) How does the ISA manual hint that blue parts of the implementation below is what they had
in mind? (Register r15 is not stored in the register file, it will always be bypassed from the real
PC.) (Note: The ARM implementation is far from complete and parts may not work.)

format

immed

IR

Addr

19:16

3:0

IF
 ID
 EX
 WB
ME

rnv

rmv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rdv

ALU

MD

dst
 dst
 dst

Decode

dest. reg

NPC

30
 2

2’b0

+

23:0

25:0
 29:0

0
 1

11:0

