
Name

Computer Architecture

EE 4720

Midterm Examination

Wednesday, 8 November 2007, 10:40–11:30 CST

Alias

Problem 1 (50 pts)

Problem 2 (20 pts)

Problem 3 (15 pts)

Problem 4 (15 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/


Problem 1: In the MIPS implementation below some wires are labeled with cycle numbers and values that
will then be present. For example, c2:9 indicates that at cycle 2 the wire will hold a 9. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any labeled wire
is changed the code would execute incorrectly. Note that the fourth instruction has been provided. [50 pts]

Finish a program consistent with these labels.

All register numbers and immediate values can be determined.

Be sure to fill the block marked Fill In.

format

immed


IR


Addr
25:21


20:16


IF


ID
 EX
 WB
ME


rsv


rtv


IMM


NPC


ALU
Addr


Data


Data


Addr
 D In


+1


PC


Mem

Port


Addr


Data

Out


Addr

Data

In


Mem

Port


Data

Out
rtv


ALU


MD


dst
 dst
 dst
Decode

dest. reg


NPC


=


30
 2

2’b0


+

15:0


25:0


29:26


29:0


0
1


15:0


c1


c2:9
c1:1


c3:
-2


c2:4


c3


c4


c3:6


c6:
 FILL

IN


c6:0xaaaa


c6:8


c6


c5:10
 c5:0x22


IM
PO

RT
AN

T


THAT’S 
MINUS

TWO


Cycle: 0 1 2 3 4 5 6 7 8

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

lb r3, 0xB(r1) IF ID EX ME WB

IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8

2



Problem 2: The VAX locc instruction (from Homework 3) appears below, along with its encoding (taken
from the Homework 3 solution).[20 pts]

locc #65, r2, (r3)

Instruction Encoding:

-opcode- -- 1st operand ---- -- 2nd op - -- 3rd op -

locc imm PC* immed reg r2 reg-d r3

mode value mode mode

0x3a 0x8 0xf 0x41 0x5 0x2 0x6 0x3 <- Encoded value.

7 0 7 4 3 0 7 0 7 4 3 0 7 4 3 0 <- Bit position.

(a) A MIPS implementation can easily retrieve its two source register values in one clock cycle.

What about the VAX instruction formats makes one-cycle source register value retrieval more difficult in
a VAX implementation (without lowering clock frequency)? Consider instructions with at most two source
register operands.

(b) The constant 65 (0x41) is encoded in immediate mode, taking a total of two bytes, rather than literal
mode, which would take only one byte if 65 were small enough for literal mode.

Given the way VAX encodes operands one might expect the maximum literal size to be only four bits. Why?

In fact, the maximum literal size is six bits. How is that accomplished? (If you don’t know or remember the
details then make up something reasonable.)

3



Problem 3: Under SPECcpu2006 base rules at most four compiler optimization switches can be used per
language. [15 pts]

What is the rationale for that restriction?

Suppose a tester would like to use five options:

cc -O4 --optimization-a --optimization-b --optimization-c --optimization-d

The tester modifies the compiler by combining options a and b, the modified compiler is made available as
a product. Now compilation can be done consistent with the rules:

cc -O4 --optimization-ab --optimization-c --optimization-d

Should that be considered cheating? Explain why or why not.

4



Problem 4: Answer each question below.[15 pts]

(a) In MIPS the branch instruction uses a 16-bit immediate to specify a displacement target, and the jal

instruction uses a 26-bit immediate. Why does it make sense to choose a coding for jal that has a larger
immediate?

(b) An ISA should be designed to support decades of implementations but invariably ISA designers are biased
towards a first implementation at the expense of later ones. A branch delay slot (as present in MIPS and
SPARC, for example) is a good example of such a phenomenon.

Explain why the branch delay slot is a good example of a shortsighted ISA feature.

5


