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Problem 1: (25 pts) Suppose it turns out that many mul.d instructions are executed with a 0 or 1 for one
of the operands, in that case the product could be computed in less than the six stages used in the class
implementation. The MIPS implementation below includes a new multiply fast unit, Mf, for such situations.

Mf has two inputs (unlabeled) and two outputs, valid and prod (they are not yet connected to anything).
As with A1 and M1, IEEE 754 doubles are expected at the inputs of Mf. If one of the inputs is 0 or 1 then the
valid output will be 1 (otherwise it is 0). If valid is 1 the prod output is the product of the two inputs;
both outputs are available by the end of the cycle.

Call a multiply fast if one of its operands is 0 or 1.
USE NEXT PAGE FOR SOLUTION!
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USE NEXT PAGE FOR SOLUTION!

(a) Add datapath and control logic for Mf meeting the requirements below:

�Add datapath so the Mf output will be written to the FP register file at the right time.

Datapath shown in blue on diagram on next page. The solution has the fast-multiply product pass through an extra stage so that WF
is fifth stage, to avoid the special case of a fast multiply being the only four-stage instruction (making it hard to squash in certain
circumstances).

� In order of decreasing priority: the added datapath must be correct, must not increase critical paths,
and should use as little new hardware as possible.

The datapath does not add multiplexors at the inputs or outputs of any functional unit (such as A4), so it does not strain critical
path. If hardware savings were more important than critical path the fast multiply product might have been muxed in after A3 or
A4.

�The control logic must detect and handle the new WF structural hazard with preceding instructions that’s
possible when writing a fast product.

The control logic appears in green on the next page. The logic labelled Control logic to insert fast multiply in the diagram detects
and handles the new structural hazard. If one exists the fast multiply path is not taken. (The alternative would be to stall.)

� If Mf is used then the mul.d’s usual WF slot should be available for other instructions. For example,
suppose the second instruction after mul.d is an add.d. If the multiply is normal the add.d would stall, if
the multiply is fast the add.d shouldn’t stall (at least for the WF conflict with mul.d).

The logic labelled Control to stop mult at M2 makes the multiply’s WF slot available to other instructions by setting we to 0 if
the fast multiply will use WF.
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(b) Add bypass hardware and control logic so that the code below executes without a stall if the mul.d turns
out to be fast. For this part assume that multiplexors at FP unit inputs won’t add to critical path.

# Cycle 0 1 2 3 4 5 6 7

mul.d f2, f4, f6 IF ID MF Mx WF

add.d f8, f2, f10 IF ID A1 A2 A3 A4 WF

�Bypass hardware for case above.

The bypass logic appears in red. See the pipeline diagram above for stage abbreviations. Note that the bypass logic is in Mf because
the add.d must make a stall decision when it is in ID and so it can’t be done any later.

The logic for selecting the WF stage is computed when the mul.d is in Mx because that logic is more elaborate and would add to
the critical path if it were in Mf (there is less time pressure in Mx).

Note that the add.d can bypass a fast multiply result even if the fast multiply won’t write back.
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Problem 2: (25 pts) Answer the following predictor questions.

(a) The code below executes on three systems, one uses a bimodal predictor with a 214-entry BHT, one uses
a local predictor with a 214-entry BHT and a 7-outcome local history, and one uses a global predictor with
a 7-outcome global history. Consider the execution of the code below, all branches are shown.

BIGLOOP:

...

B1: beq r1, r2, SKIP1 T T T T N T T T T N T T T T N T T T T N ...

...

SKIP1:

...

B2: bne r3,r4 SKIP2 T T T N N N T T T N N N T T T N N N T T T N N N ...

...

SKIP2:

...

j BIGLOOP

nop

For partial credit show work, not just answer.

�Accuracy of bimodal predictor on B1 after warmup:

Accuracy is 4

5
= 80%.

�Accuracy of bimodal predictor on B2 after warmup:

Accuracy is 2

6
≈ 33.3%.

�Accuracy of local predictor on B2 after warmup:

Accuracy is 100%

�Warmup time of local predictor on B2:

Warmup time is 6 + 6 × 2 = 19 executions of B2.

� Minimum local history size for 100% accuracy of local predictor on B2 (without ignoring B1) (show
work):

Minimum size is 5 outcomes. Four outcomes are not enough because pattern TTTN would occur in both B1 and B2 and the next
outcomes would disagree: T for B1 and N for B2.

�Accuracy of global predictor on B2 after warmup:

Accuracy is 30−2

30
≈ 93.3%. There are 5 × 6 = 30 possible GHR values (patterns). Twenty four of these will only occur when

predicting B1 or predicting B2 (but not both). For example, pattern tTnTnNn can only occur when predicting B1 (because B1 never
has 3 (or 2) consecutive n outcomes). (The upper-case letters are the outcomes of the branch being predicted, the lower-case letters
are outcomes of the other branch.) Those 24 will be followed by correct predictions. There are two shared patterns in which the
outcomes agree by happy coincidence: tNtTtTn and nNtTtTt. Pattern tTtTtTn is used twice by B1 with differing outcomes so
the impact on the PHT entry cancels out, it is also used once by B2 and so the entry reaches a value suitable for B2, 0; the same with
pattern nTtTtTt. For all patterns discussed so far correct predictions are made for B2. There are two in which B2 is incorrectly
predicted: tTtTtNn and nTtTtTt. It is used once per unit by both B1 and B2, since B1 is more frequent the PHT entry reflects
B1’s next outcome: T. Summing it up, correct predictions will be made for B2 on 28 out of 30 patterns.

�Warmup time of global predictor on B2 (explain):

Warmup time is 6 + 5 × 6 × 2 = 66 executions of B2. Based on number of distinct GHR patterns.
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Problem 2, continued: Consider the execution of the code fragment below on a system using branch
prediction. The value of c used in the switch statement is random, uniformly distributed over a to z, and
outcomes are independent (like a 26-sided die). The branch implementing the if ( x < 5 ) statement,
which will be called the if branch, is taken 50% of the time.

int c = getchar(); // Unpredictable

switch (c) {

case ’a’: x = 3; j++; break;

case ’b’: x = 7; break;

...

case ’z’: x = 1; i++; break;

}

if ( x < 5 ) foo(); else bar();

As shown below, the switch construct is implemented using a dispatch table and a jr, and other jumps.
The switch construct itself and the case blocks use no branches.

# Part of code implementing switch construct.

# Value in register $t1 has been computed using variable c.

lw $t0, 0($t1) # Load the address of the case statement corresponding to c.

jr $t0 # Jump to case statement.

nop

# Case ’a’

addi $t5, $0, 3 # x = 3;

j endswitch

addi $t7, $t7, 1 # j++

...

(b) The predictors covered in class would all achieve just a 50% prediction accuracy on the if branch. Explain
why they might do better if the case statements contained branches, but the values assigned to x are the
same as the example above and the if branch is the same. Note: The original exam did not have this part.

�Why predictors might do better on if branch when cases have branches.

They might be able to tell which case statement was executed by the pattern of recent branch outcomes.
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(c) Modify one of the predictors used in class so that it does better than 50% on the if branch. The predictor
should also work well on similar switch statements and on predict well on code not having switch statements.
Don’t design a predictor for exactly the code above. For example, the predictor shouldn’t somehow find or
guess the value of x. Hint: Think about the answer to the previous part. A correct solution requires just a

small modification of one of the predictors shown in class.

�Briefly explain the idea behind your predictor.

If the predictor could determine which case statement was executed then it could better, or maybe perfectly, predict the branch. A
global or gshare predictor “knows” the outcome of prior branches (they are in the GHR) and uses that to make a prediction. Here the
predictor needs to know which case statement was executed, or equivalently what the target of the jr instruction was. So a predictor
for the code above would shift jr target addresses in the GHR, just as branch outcomes are shifted into the GHR. The entire target
address would be too large, but the lower order bits, say 4 of them, might do.

�Draw a diagram of the predictor.

�Show tables such as BHT and PHT.

The diagram below is a gshare predictor modified so that it would accurately predict the branch. The material in blue shows changes
specific to this problem. The size of the BHT and the size of the local history match the first part of this problem.

In a more realistic predictor the BHT would just store a branch displacement (16 bits) and a separate jump target buffer (JTB) would
hold 30-bit addresses (or maybe just the other 14 bits) for jumps.
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Problem 3: (20 pts) The diagram below is for a 256-MiB (228-character) set-associative cache with a line
size of 64 characters on a system with the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.
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�Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 24

Index

23 6

Offset

5 3 2 0

�Associativity:

Based on the high bit position used for the data store, 23, the data store size is 224 characters. Since the total cache capacity is 228

characters the cache must be 2
28

224 = 16-way set associative .

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity plus 16 × 224−6 (32 − 24 + 1) bits.

�Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

31 28

Index

27 6

Offset

5 3 2 0
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Problem 3, continued:

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

�What is the hit ratio running the code below? Explain

double sum = 0.0;

long *a = 0x2000000; // sizeof(long) = 8 characters.

int i;

int ILIMIT = 1 << 10; // = 210

for(i=0; i<ILIMIT; i++) sum += a[ i ];

The line size of 64 characters is given, the size of an array element is 8 characters. The miss on the first iteration will bring in a line
which is 64 characters or 8 longs, the first long will be accessed. The second iteration will access the second long on this line.

The line will be “used up” at i = 64

8
= 8, and so for each miss there are 7 hits. The hit ratio is 7

8
. .
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(c) Consider a 1 MiB (220 byte) direct mapped cache with a line size of 256 characters (not the same as
the one from parts a and b) for a system with a 32-bit address space. Suppose this cache has the following
defect: a particular bit position in the tag comparison unit will match even if the tags differ. That is, if the
bad bit position were 2 then tags 0x5 and 0x1 would match. Other cache hardware functions correctly. The
cache is write through and write around.

�Complete the program below so that it finds the bad bit position in a small amount of time and assigns
it to badbit.

�For maximum partial credit briefly describe your strategy.

• The cache is empty when the program starts.

• Assume that any address can be read or written.

char *a = 0x1000;

int bad_bit = -1; // At end should be set to position of bad tag bit.

// SOLUTION

unsigned int i;

// Initialize elements to zero.

// Since cache is write-around these initialized elements won’t be cached.

// Tag values are: 1, 2, 4, ..., 4096

//

for ( i=20; i<32; i++ ) a[ 1 << i ] = 0;

// Initialize this element to 1.

// Tag value is 0.

a[0] = 4720;

int dummy = a[0]; // Make sure a[0] is in cache.

// Each element fetch should miss the cache and find a zero. If

// the tag comparison is wrong then it will hit and find the 4720.

for ( i=20; i<32; i++ )

if ( a[ 1 << i ] == 4720 ) break;

if ( i != 32 ) bad_bit = i - 20;
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Problem 4: Answer each question below.

(a) (6 pts) A trap instruction is sort of like a procedure call (e.g., jal) to the operating system.

�Describe a difference between a trap and jal in how the target address is specified.

A jal specifies the low bits of the target address. A trap does not specify any address at all, the target address is a particular entry
in the trap table, and the trap table address is defined by the MIPS ISA and built into the hardware.

�Describe another important difference between a trap and a jal.

A trap switches the processor to privileged mode.

(b) (6 pts) A log (logarithm) instruction is to be added to an ISA. Group E wants to define the log

instruction as producing the IEEE 754 double representation that is closest to the exact result. Group A
would define log as producing any result within a certain number of bits of the exact result. Group A argues
that the precision of an exact result is not needed and their approximate result is sufficient. Group E agrees

with this, they want an exact result for other reasons. Hint: Think about the reasons for separating ISA and

implementation.

�Why might group A want an approximate result?

It can be computed faster than an exact result.

�Why might group E want an exact result?

Code would run exactly the same way on different implementations. (Note that the A-group definition of log would allow to
implementations to produce different results, so long as they were close enough to an exact result.)
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(c) (6 pts) Consider two scalar MIPS implementations, implementation A is similar to the one covered in
class with the familiar stages IF ID EX ME WB while implementation B has stages IF I1 I2 I3 I4 EX ME

WB. The two implementations run at the same clock frequency and are similar in other ways.

� Explain why implementation A does not need a branch predictor, or at best would only gain a small
amount of performance.

Because the branch target and direction are available in time for IF, so long as there is no unbypassable dependence. Consider the
code execution below which is on a processor with an aggressive EX-to-ID bypass for the branch condition. The branch has the
direction and target ready in cycle 2, which is in time for the fetch of the target which starts in cycle 3. There is no need for a branch
prediction. If the branch condition were from a load instruction (or if the aggressive bypass were not possible) the branch would have
to stall and so branch prediction would help, but only a little.

# SOLUTION example

# Cycle 0 1 2 3 4 5 6 7

sub r1, r2, r3 IF ID EX ME WB

bneq r1,r5 TARG IF ID EX ME WB

xor r9, r10, r11 IF ID EX ME WB

TARG:

add r12,r13,r14 IF ID EX ME WB

�Explain why a branch predictor would help implementation B much more than implementation A.

Because the branch would not be resolved until after several instructions past the delay slot instruction were fetched, these instructions
would have to be squashed if the prediction were wrong. In the example below three instructions, or and two others not shown, are
squashed because the branch is mispredicted not-taken.

# SOLUTION example

# Cycle 0 1 2 3 4 5 6 7

sub r1, r2, r3 IF I1 I2 I3 I4 EX ME WB

bneq r4,r5 TARG IF I1 I2 I3 I4 EX ME WB

xor r9, r10, r11 IF I1 I2 I3 I4 EX ME WB

or IF I1 I2x

TARG:

add r12,r13,r14 IF I1 I2 I3 I4 EX ME WB

�Consider the performance of implementation A and implementation B when branch prediction is perfect
for both. Which (if any) is faster, and by how much? Explain, state any assumptions made.

They would be the same performance because the only other events that could slow execution, dependence stalls, would be just as
frequent and just as long.
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(d) (6 pts) The code below executes on a two-way superscalar dynamically scheduled machine similar to the
one presented in class. The sub instruction reads the value of r1 from the register file in cycle 10, xori
writes a value for r1 in cycle 6 and lw writes a value for r1 in cycle 9.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r9, r1 IF ID Q RR EX WB C

or r6, r3, r8 IF ID Q RR EX WB C

xori r1, r4, 5 IF ID Q RR EX WB C

sub r5, r1, r3 IF ID Q RR EX WB C

�Briefly explain why the code runs correctly despite the fact that lw writes after xori.

Because registers are renamed, meaning lw writes a different physical register than xori and so there is no confusion.

(e) (6 pts) Modern VLIW ISAs are designed with modern implementations in mind, unlike decades old RISC
ISAs.

�Show the contents of a typical VLIW bundle.

A bundle typically contains three RISC style instructions plus some dependency information.

�Provide an example of a VLIW feature that’s designed to make implementation easier. Explain how it
does so.

The dependency information eases design of the control logic, perhaps shortening critical paths.
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