
Name

Computer Architecture

EE 4720

Final Examination

10 May 2007, 7:30–9:30 CDT

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPCInt Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2M
1

xw xw

fd

we

"0"
"2"
"1"

30 2
"0"

+ 15:0 29:0

0
1

2

A B C

D

Stall
ID

Problem 1:
(20 pts) The
statically sched-
uled MIPS
implementa-
tion illustrated
to the right
is taken from
the class notes.
To avoid mak-
ing things too
easy some de-
scriptions were
removed from
logic blocks
in the lower-
left corner.

(a) The execution of a code
fragment is shown below, fol-
lowed by a table with rows
corresponding to labeled wires
in the diagram (including
Stall ID). Fill in the table
showing values on those wires
only for cycles in which those

values are used. That is, if
a value in the table is changed
execution must be incorrect.

Complete the table, omitting unused values.

Cycle 0 1 2 3 4 5 6 7 8 9 10

mul.d f2, f12, f18 IF ID M1 M2 M3 M4 M5 M6 WF

add.d f8, f10, f16 IF ID A1 A2 A3 A4 WF

sub.d f6, f20, f14 IF ID -> A1 A2 A3 A4 WF

lwc1 f4, 0(r1) IF -> ID -------> EX ME WF

Cycle 0 1 2 3 4 5 6 7 8 9 10

A:

B:

C:

D:

Stall ID:

Cycle 0 1 2 3 4 5 6 7 8 9 10

2

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPCInt Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2M
1

xw xw

fd

we

"0"
"2"
"1"

30 2
"0"

+ 15:0 29:0

0
1

2

Stall
ID

(b) Show the execution of the code below on the implementation assuming that all needed bypass are present.
Don’t forget to check for dependencies. (Instruction mtc1 moves a value from an integer register to a floating-
point register.)

Pipeline diagram.

mtc1 f2, r7

add.s f3, f4, f2

add.s f6, f3, f8

(c) Add the bypass paths needed by the code above and show the control logic for the added paths. Do not

add unneeded bypass paths. Hint: Control logic should consist of two one-bit signals.

Bypass paths for code above.

Control logic for added bypass paths.

3

Problem 2: (20 pts) Illustrated is the execution of some code on our dynamically scheduled MIPS imple-
mentation along with the contents of the ID register map, the commit register map, and the physical register
file. The implementation itself is shown on the next page.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f4, f6 IF ID Q RR M1 M2 M3 M4 WF C

add.d f4, f2, f10 IF ID Q RR A1 A2 A3 WF C

ldc1 f2,0(r1) IF ID Q EA ME WF C

sub.d f2, f2, f8 IF ID Q RR A1 A2 A3 WF C

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID Register Map

F2: 12 9 71 99

F4: 18 51

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Commit Register Map

F2: 12 9 71 99

F4: 18 51

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Physical Register File

9 [2.1]

12 2.0]

18 4.0]

51 [4.1

71 [2.2]

99 [2.3

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(a) Answer the following

Which physical register was allocated for f4 in add.d?

If one used the ID map to determine the value of f2 in cycle 11, what value would one obtain? Hint:

It’s a two-step process.

If one used the commit map to determine the value of f2 in cycle 11, what value would one obtain?
Hint: It’s a two-step process.

In cycle 11 where is the value of f2 from ldc1 located?

4

Problem 2, continued: Dynamically scheduled processor shown for reference.

25:21

20:16
rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

PC

ID:dst
ID:St: C,X

0,0
WB:ROB #
WB:C,X

Addr

D In

Re
or

de
r B

uf
fe

r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

Fr
ee

 L
ist

ID:dstPR
ID:dstPR

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q EX

dstPR
dstVal.

WB

RR

WB

Decode
dest. reg

ID:incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

Re
co

ve
r

EA*

A1

M1

ME*

* Were called
L1 and L2.

5

Problem 2, continued:

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f4, f6 IF ID Q RR M1 M2 M3 M4 WF C

add.d f4, f2, f10 IF ID Q RR A1 A2 A3 WF C

ldc1 f2,0(r1) IF ID Q EA ME WF C

sub.d f2, f2, f8 IF ID Q RR A1 A2 A3 WF C

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID Register Map

F2: 12 9 71 99

F4: 18 51

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Commit Register Map

F2: 12 9 71 99

F4: 18 51

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Physical Register File

9 [2.1]

12 2.0]

18 4.0]

51 [4.1

71 [2.2]

99 [2.3

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(b) Suppose that in cycle 11 the contents of physical register number 71 was somehow changed, perhaps due
to a one-time problem. If the code executes as shown then the program runs correctly. But if a hardware
interrupt happens (is taken) at the wrong time execution would be incorrect because of this change. Explain
why, illustrate timing details on the diagram.

Reason for incorrect execution.

Timing details on diagram.

6

Problem 3: (20 pts) The MIPS code below runs on a system using a bimodal branch predictor of the
indicated sizes. Branch outcomes are shown for each branch, the outcome patterns will continue to repeat.

BIGLOOP:

B1: 0x1000 beq r1, r2 T T T T T N T N N T T T T T T N T N N T ...

... nonbranch insn.

...

B2: 0x1100 bne r3, r4 N ...

nop

j BIGLOOP

nop

(a) What is the accuracy after warmup of a bimodal branch predictor with a 214-entry BHT on branch B1?

214-entry BHT bimodal accuracy on B1.

(b) What is the accuracy after warmup of a bimodal branch predictor with a 24-entry BHT on branch B1?

24-entry BHT bimodal accuracy on B1.

(c) What is the smallest BHT size for which one can obtain the same accuracy on branch B1 as a 214 entry
table? Explain.

Smallest size for 214 entry accuracy.

Reason.

(d) Normally the BHT in a MIPS implementation is indexed starting at bit position 2 (omitting the 2
least-significant digits) of the branch PC (address). For the following questions think about answers to the
preceding parts but answer the question for ordinary programs, not the code sample above.

Why might starting at position 3 or 4 be better?

Why might starting at position 10 or 11 be worse?

7

Problem 4: (20 pts) The diagram below is for a 4-MiB (222-character) set-associative cache with a line
size of 16 characters on a system with the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU
Addr

Data

Data

 Addr
Out

Tag

 Addr

=Tag

Valid
Data

 Addr
Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32 b

32 b

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Associativity:

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a 64-way set-associative cache with the same capacity and line size.

Address:

8

Problem 4, continued:

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

What is the hit ratio running the code below? Explain

double sum = 0.0;

short *a = 0x2000000; // sizeof(short) = 2 characters.

int i;

int ILIMIT = 1 << 10; // = 210

for(i=0; i<ILIMIT; i++) sum += a[i];

(c) The code below runs on a direct mapped cache with the same line size and capacity as the cache from the
first part. Initially the cache is empty; consider only accesses to the arrays. Choose b, ILIMIT, and ISTRIDE

so that the cache is completely filled in the minimum number of iterations (minimum ILIMIT). (Every access
should be a miss.)

b, ILIMIT, and ISTRIDE

Briefly explain each choice.

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

char *b = // FILL IN

int i;

int ILIMIT = // FILL IN

int ISTRIDE = // FILL IN

for(i=0; i<ILIMIT; i++)

sum += a[i * ISTRIDE] + b[i * ISTRIDE];

9

Problem 5: Answer each question below.

(a) (5 pts) Consider trap instructions and instructions that raise exceptions.

What are trap instructions typically used for?

Sometimes when an instruction in a program raises an exception the program ultimately is allowed to
continue. Give an example of such an exception, and what the handler might do.

(b) (5 pts) When a MIPS instruction raises an exception the type of exception is written to the cause register.
SPARC V8 lacks an equivalent of a cause register, so what does it use as a substitute? Explain.

SPARCs alternative to MIPS’ cause register.

10

(c) (5 pts) An early critic might have said that the improvements realized by dynamically scheduled systems
could be achieved on much less expensive statically scheduled systems by using better compilers. The
particular compiler improvements would help statically scheduled systems but have no impact on dynamically
scheduled ones. Consider two-way superscalar systems for the examples needed below.

Explain what the compilers would have to do and why.

Provide an example, showing code before and after optimization.

(d) (5 pts) What is it about loads that allow dynamically scheduled systems to outperform statically scheduled
systems even with good compilers?

Explain.

11

