
Name Solution

Computer Architecture

EE 4720

Final Examination

14 December 2006, 17:30–19:30 CST

Alias DVD-HD or Blu-ray?

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (15 pts)

Problem 4 (15 pts)

Problem 5 (15 pts)

Problem 6 (15 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: In the MIPS implementation on the next page some wires are labeled with cycle numbers and
corresponding values. For example, c3:1 indicates that at cycle 3 the pointed-to wire will hold a 1. Other
wires are labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any
labeled wire is changed the code would execute incorrectly. The ALU label shows the arithmetic operation
performed at the indicated cycle.(20 pts)

• There are no branches or other control-transfer instructions.

• There are no stalls.

• Every instruction writes the floating-point register file.

• Some instruction(s) read the integer register file.

• One instruction has only briefly been covered, make up a reasonable name for it if you don’t
remember it.

©Write a program consistent with these labels.

© Some registers can be determined exactly, others must be made up. Use as many different register

numbers as possible while still being consistent with the labels.

©Fill in the block in the lower-left of the diagram.

2

Problem 1, continued:

format

immed

IR

Addr

25:21

20:16

IF
 EX
 WB
MEM

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst
Decode

dest. reg

NPC
Int Reg File

FP Reg File

fd
fd

WF

Addr
 Data

D In
WE

Addr

Addr

Data

fsv

ftv

15:11

20:16

M6

we
 we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3
A2
A

1

M3
 M4
 M

5

fd

we

fd

we

M2
M

1

fd

we

uses FP add

uses FP mul

FP load

30
 2

"0"

+
 15:0
 29:0

ad

ml

ad
 ad

ml
 ml
 ml

ad
 ad

ml
 ml
 ml

c3:1
 c4:10
 c10:1
 c10:20

c5

c6

c5

c3:24

s

t

x

 c3: x = s + t

 c4: x = t

c3:5

c1:12

c5:6

c1:
1

c2:
0

c3:
0

c4:
x’

c5:
x

c1:
0

c2:
0

c3:
0

c4:
1’

c5:
1

PLEASE

FILL IN

Solution Below and Above in Red

#

Upper case shows single correct instruction or register, lower case

shows one of several possible correct instructions or registers.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

0x1000: ADD.s F10, F12, f14 IF ID A1 A2 A3 A4 _5 _6 WF

0x1004: LwC1 f16, 24(r1) IF ID EX ME _3 _4 _5 _6 WF

0x1008: MTC1 F20, R5 IF ID EX ME _3 _4 _5 _6 WF

0x100c: mul.s f4, f16, f8 IF ID A1 A2 A3 A4 _5 _6 WF

0x1010: MUL.s f2, F10, F6 IF ID M1 M2 M3 M4 M5 M6 WF

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

Instruction at 0x1000: The c1:12 in ID indicates that the first source register is f12. The c4:10 in stage 3 directly provides

the destination register, f10. The c6 in stage 5 indicates that this can’t be a multiply, and since it reads the floating point
register file it can only be an add.

Instruction at 0x1004: The c3:24 in EX indicates that this starts out in the integer pipeline (using an immediate of 24), the

3

c5 in WB indicates that it’s a load, and the c5 in stage 1 shows that it must be a floating point load, such as lwc1 (load word
co-processor 1). There is no way to determine the destination or base register.

Instruction at 0x1008: Like the previous instruction, this starts in the integer pipeline, indicated by the c3:5 in ID. The c4:x=t

in EX indicates that its result is the rt register value (the instruction performs no computation). The c10:20 in WF indicates that
this instruction writes register f20. Since it uses an rt value it can’t be a load, so it’s probably an mtc1 (move to coprocessor 1),
an instruction that moves a value from the integer register file to the floating-point register file.

Instruction at 0x100c: The c5 in 1 indicates that this instruction bypasses from the instruction in WB (the integer pipe) and
so the second source register of this instruction must match the destination of the instruction at 0x1004. Note that there is not
enough information to determine what that register is, f16 is an arbitrary choice.

Instruction at 0x1010: The c10:1 in 1 indicates that this is a multiply. The c6 in 1 (or 5 from 0x1000’s perspective)

indicates a bypass with the instruction at 0x1000, revealing the first source register, f10. The c5:6 in ID gives the second source
register, f6. There is no way to determine the destination register.

AD Mux Control Signal Fill In: Values for the first fill-in are the control signals for the stage- 5 mux. A value of 0 indicates that the
instruction will write a value from the integer pipeline (such as a lwc1 or mtc1), a value of 1 indicates it will write a value produced
by the floating-point adder (such as add.s or sub.s). For other instructions it doesn’t matter what the value is. In the solution,
shown in red, the x indicates either value is okay. This solution is valid when the instruction at 0x100c is a mul.s; it could have
been an add.s and if it were the value at c4 would be 1.

ML Mux Control Signal Fill In: Values for the second fill-in are the control signals for the WF-stage mux. The value should be 1
for multiply, or 0 for other instructions that write the FP register file. If an instruction doesn’t write the FP register file the value
doesn’t matter. The solution appears in red. If the instruction at 0x100c were an add the value at c4 would be a 0.

4

PC

BHT
 PHT

addr
 d
 addr
 d

local history

2

predict taken if >1

5
11:2

Predictor X

4:2

Problem 2: The code below runs on three sys-
tems which are identical except for the branch
predictors. One system uses a bimodal predic-
tor with a 1024-entry BHT, one uses a local his-
tory predictor with a 1024-entry BHT and a five-
outcome history, and one uses Predictor X, illus-
trated below. (The PHT input is a concatenation
of the local history and three branch PC bits.)
The code below has two branches, B1 and B2,
which execute in a repeating pattern as shown.
There are no other branches in the code.(20 pts)

Note: In the original problem the input to Predictor X used an exclusive or rather than a concatenation.

LOOP:

..

0x1000: B1: bne r1,r2 SKIP1 N N N T T N N N T T N N N T T N N N T T ...

..

SKIP1:

..

0x1124: B2: bne r3,r4, SKIP2 N N N T T T N N N T T T N N N T T T ...

..

SKIP2

..

j LOOP

©What is the accuracy of the bimodal predictor on branch B1 after warmup?

Accuracy on B1: 2

5
. Solution is straightforward.

Note: In the original exam the questions below asked about B1 rather than B2.

©What is the accuracy of the local predictor on branch B2 after warmup? (Do not ignore branch B1 when
answering this part.)

Accuracy on B2: 5

6
. Branch B2 is predicted using six distinct local history patterns, three of which (TNNNT, NNNTT and TTNNN)

are shared with B1. With one of the shared patterns, NNNTT, the next outcomes disagree: not-taken for B1 and taken for B2. Since
B1 occurs slightly more often the PHT entry at address 3 (NNNTT) will eventually start predicting only B1 correctly. Therefore the

predictions made using only five out of six patterns in B2 will be correct and the accuracy will be 5

6
.

5

©What is the minimum local history size for the local predictor to achieve 100% accuracy on branch B2
(without ignoring B1)?

Eight outcomes.

With eight outcomes B1 and B2 won’t share patterns.

©What is the accuracy of Predictor X on branch B2?

Accuracy is 100% . Predictor X is similar to the local predictor except that by concatenating branch address bits with local history,
two different branches (or at least those that differ in PC bits 4:2) with the same local histories will be stored in separate PHT entries.
This will avoid the interference suffered by B1 and B2 in the five-outcome local history predictor.

©What is the minimum local history size for the Predictor X to achieve 100% accuracy on branch B2
(without ignoring B1)?

Minimum history size is three outcomes . With X one can ignore B1 because B1 and B2 will use separate entries. Then considering
B2 alone, only three outcomes are needed.

©Explain why predictor X has lower or higher accuracy than the local predictor on branch B2.

Because it avoids interference.

©As indicated above, B1 is at address 0x1000 and B2 is at address 0x1124. How would different branch
addresses affect the answers above?

If bits 4:2 were the same then predictor X would perform the same as the local predictor. If bits 11:2 of the two branches were the
same then the local predictor would perform more like a global predictor.

6

Problem 3: Consider the execution of MIPS code below. The code follows a large number of nop instruc-
tions. As can be seen the system below is statically scheduled. In the questions below “relatively simple”
means simple compared to dynamic scheduling.

(15 pts)

PC Cycle: 0 1 2 3 4 5 6 7

0x1ff0: lh r1, 0(r2) IF ID EX ME WB

0x1ff4: lw r4, 8(r2) IF ID -> EX ME WB

0x1ff8: addi r6, r6, 1 IF ID -> EX ME WB

0x1ffc: xor r8, r9, r10 IF ID -> EX ME WB

0x2000: sub r11, r8, r13 IF -> ID EX ME WB

0x2004: and r14, r11, r16 IF -> ID -> EX ME WB

PC Cycle: 0 1 2 3 4 5 6 7

©What is the minimum fetch/decode width of a system that could produce that execution? (The x in
x-way superscalar)

Minimum width: 4 . It must be at least 4 because in cycle zero four instructions are being fetched at the same time.

©Why is the fetch/decode width above a minimum and not an exact number?

It’s still possible that the system is wider, say 8-way, but is limited to aligned fetch groups and that would explain why the instruction
at 0x2000 was fetched in cycle 1 rather than 0.

©What caused the and to stall in cycle 4? Could the stall be avoided?

True data dependence with the sub. That could not be avoided.

©What might have caused lw to stall? Suggest a relatively simple change to the implementation to avoid
such stalls.

There may have been only one memory port in the ME stage, to be shared by all four instructions. A solution would be to include a
second memory port.

©What might have caused addi and xor to stall? Note: The original question also asked for a “relatively

simple solution.”

If addi and xor did not stall and if new instructions moved into ID then the instructions in ID would be out of order (because of the
lw which must stall). One could modify the control logic so that it could handle instructions being out of order in ID, the complexity
would probably not be worth the effort.

7

Problem 4: Consider the dynamically scheduled implementation below. (15 pts)

25:21

20:16

rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem

Port

Addr

Data

PC

PC

ID:dst

ID:St: C,X

0,0

WB:ROB #

WB:C,X

Addr

D In

Re
or

de
r B

uf
fe

r

C:dst
Control

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #

tail

head
 WB

C

ID
IF

rtPR

Fr
ee

 L
ist

ID:dstPR

ID:dstPR

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr

D In

rsPR

rtPR

rsVal

rtVal

Physical

Register File

Op, dstPR, ROB#

Out
In

Scheduler

Q
 EX

dstPR

dstVal.

WB

RR

WB

Decode

dest. reg

ID:incm
b

Addr

Addr

Data

Data

Addr

D In

D Out

ID:dst

ID:incmb

ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

Re
co

ve
r

EA*

A1

M1

ME*

* Were called

L1 and L2.

(a) Where is the logic for finding the (data) dependencies that requiring bypassing most likely to be?

© Indicate on diagram.

Within the scheduler and instruction queue.

(b) Suppose due to a manufacturing error every entry in the ID register map is initialized to 12 after each
reset, but the commit register map was properly initialized. Initial register values are not defined, so getting
the wrong value for a register that was never written is not a problem here.

©Which code fragment below is more likely to encounter a problem? Hint: It has something to do with

the connection from the ID Register Map to the ROB.

The first one.
Fragment A

add r1, r2, r3

add r2, r1, r5

add r1, r6, r7

add r2, r8, r9

nop

..

Fragment B

add r0, r2, r3

add r0, r1, r5

nop

...

©Explain what goes wrong.

Because of the flaw the first instruction gets p12 as an incumbent for r1 and the second instruction also gets p12 as an incumbent
for r2. After the third and fourth instructions commit p12 will appear in the free list twice, and so later when they are removed
from the free list the same physical register (p12) could be simultaneously assigned to two in-flight instructions. Each of these two
instructions will expect to write its own register, instead they will be writing the same register, causing problems.

8

© Suppose millions of these defective implementations have already been manufactured. Suppose when
turned on the processor starts executing code at address 0x1000. What code could be put there to fix the
problem? (It’s not one of the fragments above because one of them only avoids it, later code could still
trigger it.) Hint: There’s enough room for the answer below.

If the instruction at 0x1000 raises an exception then the recovery mechanism will copy the commit map to the ID map, fixing the
problem. The only tricky part is getting the exception handler in place before the first instruction executes.

9

Problem 5: The diagram below is for a 64-MiB (226-character) set-associative cache on a system with the
usual 8-bit characters. (15 pts)

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

©Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=
Tag

Valid

Data

 Addr

Tag

 Addr

=
Tag

Valid

Hit

Out

Out

Out

:

:
:5 .

:
63:24
16

64

256 bits

23

63 24

23 8

23 5

©Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

63 24

Index

23 8

Offset

7 5 4 0

©Associativity:

The cache is 4-way set associative.

©Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity plus 4 × 224−8 (64 − 24 + 1) bits.

©Line Size (Indicate Unit!!):

Line size is 28 = 256 characters.

©Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

63 26

Index

25 8

Offset

7 5 4 0

10

Problem 5, continued: For the problems on this page use the cache from the previous page.

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

©What is the hit ratio running the code below? Explain

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

int i;

int ILIMIT = 1 << 10; // = 210

for(i=0; i<ILIMIT; i++) sum += a[i * 4];

The line size is 28 = 256 characters and the size of an array element is one character. The miss on the first will bring in 256
characters, a line. The second iteration will access data on this line. The line will be “used up” at i = 256

4
= 64, and so for each

miss there are 63 hits. The hit ratio is 63

64
. .

(c) The code below also runs in the cache from part a. Find the minimum values of JLIMIT and JSTRIDE

that will result in the code below having a 0% hit ratio.

© JSTRIDE and JLIMIT

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

int i, j;

int ILIMIT = 1 << 10;

int JLIMIT = // FILL IN

int JSTRIDE = // FILL IN

for(i=0; i<ILIMIT; i++)

for(j=0; j<JLIMIT; j++)

sum += a[i + j * JSTRIDE];

Notice that the pattern of accesses when i=0 is the same as when i=1, etc., so the strategy is to make sure that whatever is cached
when j=0 is evicted by the time j=JLIMIT.

One way of doing that is to set JSTRIDE so large that each access will use a different tag (but have the same index). Since the tag

bits start at bit 24 and the array element size is a character, JSTRIDE = 1 << 24 . Since the cache is four-way set associative
it can only hold four lines with the same index and different tags. So with JSTRIDE = 1 << 24 the line brought in when j=0 will

be evicted (assuming LRU replacement) when j=4. By setting JLIMIT=8 no data brought in on one i iteration will be present
in the next one.

11

Problem 6: Answer each question below.

(a) In MIPS, SPARC, and many other RISC ISAs memory accesses are aligned and so any instruction that
uses an un-aligned address, such as 0x1001 for a MIPS word, will raise an exception usually resulting in the
program exiting with a Bus Error.

Perhaps due to the stress of an upcoming code freeze for a product release, a mysterious programmer at
Software Company X secretly hacked the operating system of their SPARC computers so that loads and
stores to un-aligned addresses would complete correctly, as though un-aligned accesses were not forbidden.
There would be no more bus errors. (5 pts)

©How might the mysterious programmer have done it?

Modify the exception handler that is used for un-aligned accesses. If the exception were raised by a load the handler might get the
data using two load instructions, say one to address 0x1000 and one to address 0x1004, and then put together the low three bytes
of the data from 0x1000 and the high byte of 0x1004, and put that data in the destination register of the faulting load instruction.
Finally, the handler would resume execution at the instruction following the load. To the program it would appear as though the load
worked.

©Should Software Company X reward or punish the mysterious programmer? Explain.

Punish! The unaligned accesses are due to bugs in the program. The modified handler hides the bugs from the company’s
programmers but customers, since they don’t have the hacked OS, will see them. Even if customers could be given the modified
handler the programmers might still want to avoid unaligned access since it slows the program down.

(b) The SRAM used to implement caches is costly but in many cache designs can provide 1- or 2-cycle hit
latencies. If cost were not an issue, could one use SRAM for the entire memory system and get 1- or 2-cycle
latencies on all memory accesses?(5 pts)

©Explain.

No, because the time for a cache hit includes not just the time to retrieve the data from the SRAM but also the time needed for
decoding the addresses and moving the data to the CPU. If SRAM were used for all memory it would have to be spread over many
chips and so the part of the access latency would be chip crossing delays, contributing to an access latency larger than 1 or 2 cycles.

(c) Manufacturers have a great interest in having their processors score high in SPECcpu. Given this strong
interest how can we be sure that benchmark selection and the run & reporting rules have not been chosen
to favor a particular manufacturer? (This isn’t kindergarten, so “because it’s not allowed” is not a good
answer.)(5 pts)

©Explain.

SPEC has representatives from many manufacturers. If someone proposed benchmarks or rules that favor one manufacturer’s products
representatives from other manufacturers can be expected to forcefully object.

12

