
Name

Computer Architecture

EE 4720

Final Examination

14 December 2006, 17:30–19:30 CST

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (15 pts)

Problem 4 (15 pts)

Problem 5 (15 pts)

Problem 6 (15 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: In the MIPS implementation on the next page some wires are labeled with cycle numbers and
corresponding values. For example, c3:1 indicates that at cycle 3 the pointed-to wire will hold a 1. Other
wires are labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any
labeled wire is changed the code would execute incorrectly. The ALU label shows the arithmetic operation
performed at the indicated cycle.(20 pts)

• There are no branches or other control-transfer instructions.

• There are no stalls.

• Every instruction writes the floating-point register file.

• Some instruction(s) read the integer register file.

• One instruction has only briefly been covered, make up a reasonable name for it if you don’t
remember it.

Write a program consistent with these labels.

Some registers can be determined exactly, others must be made up. Use as many different register

numbers as possible while still being consistent with the labels.

Fill in the block in the lower-left of the diagram.

2

Problem 1, continued:

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPCInt Reg File

FP Reg File

fdfd

WF
Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16

M6

we we
Decode
dest. reg

ID

A4

fd
we

fd
we

A3A2A
1

M3 M4 M
5

fd
we

fd
we

M2M
1

fd
we

uses FP add

uses FP mul

FP load

30 2
"0"

+ 15:0 29:0

ad
ml

ad ad
ml ml ml

ad ad
ml ml ml

c3:1 c4:10 c10:1 c10:20

c5

c6

c5

c3:24

s

t
x

 c3: x = s + t
 c4: x = t

c3:5

c1:12

c5:6

c1:
c2:
c3:
c4:
c5:

c1:
c2:
c3:
c4:
c5:

PLEASE
FILL IN

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12

IF ID _1 _2 _3 _4 _5 _6 WF

IF ID _1 _2 _3 _4 _5 _6 WF

IF ID _1 _2 _3 _4 _5 _6 WF

IF ID _1 _2 _3 _4 _5 _6 WF

IF ID _1 _2 _3 _4 _5 _6 WF

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12

3

PC

BHT PHT

addr d addr d

local history

2

predict taken if >1

511:2

Predictor X

4:2

Problem 2: The code below runs on three sys-
tems which are identical except for the branch
predictors. One system uses a bimodal predic-
tor with a 1024-entry BHT, one uses a local his-
tory predictor with a 1024-entry BHT and a five-
outcome history, and one uses Predictor X, illus-
trated below. (The PHT input is a concatenation
of the local history and three branch PC bits.)
The code below has two branches, B1 and B2,
which execute in a repeating pattern as shown.
There are no other branches in the code.(20 pts)

Note: In the original problem the input to Predictor X used an exclusive or rather than a concatenation.

LOOP:

..

0x1000: B1: bne r1,r2 SKIP1 N N N T T N N N T T N N N T T N N N T T ...

..

SKIP1:

..

0x1124: B2: bne r3,r4, SKIP2 N N N T T T N N N T T T N N N T T T ...

..

SKIP2

..

j LOOP

What is the accuracy of the bimodal predictor on branch B1 after warmup?

Note: In the original exam the questions below asked about B1 rather than B2.

What is the accuracy of the local predictor on branch B2 after warmup? (Do not ignore branch B1 when
answering this part.)

What is the minimum local history size for the local predictor to achieve 100% accuracy on branch B2
(without ignoring B1)?

What is the accuracy of Predictor X on branch B2?

What is the minimum local history size for the Predictor X to achieve 100% accuracy on branch B2
(without ignoring B1)?

Explain why predictor X has lower or higher accuracy than the local predictor on branch B2.

As indicated above, B1 is at address 0x1000 and B2 is at address 0x1124. How would different branch
addresses affect the answers above?

4

Problem 3: Consider the execution of MIPS code below. The code follows a large number of nop instruc-
tions. As can be seen the system below is statically scheduled. In the questions below “relatively simple”
means simple compared to dynamic scheduling.

(15 pts)

PC Cycle: 0 1 2 3 4 5 6 7

0x1ff0: lh r1, 0(r2) IF ID EX ME WB

0x1ff4: lw r4, 8(r2) IF ID -> EX ME WB

0x1ff8: addi r6, r6, 1 IF ID -> EX ME WB

0x1ffc: xor r8, r9, r10 IF ID -> EX ME WB

0x2000: sub r11, r8, r13 IF -> ID EX ME WB

0x2004: and r14, r11, r16 IF -> ID -> EX ME WB

PC Cycle: 0 1 2 3 4 5 6 7

What is the minimum fetch/decode width of a system that could produce that execution? (The x in
x-way superscalar)

Why is the fetch/decode width above a minimum and not an exact number?

What caused the and to stall in cycle 4? Could the stall be avoided?

What might have caused lw to stall? Suggest a relatively simple change to the implementation to avoid
such stalls.

What might have caused addi and xor to stall? Note: The original question also asked for a “relatively

simple solution.”

5

Problem 4: Consider the dynamically scheduled implementation below. (15 pts)

25:21

20:16
rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

PC

ID:dst
ID:St: C,X

0,0

WB:ROB #
WB:C,X

Addr

D In

Re
or

de
r B

uf
fe

r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

Fr
ee

 L
ist

ID:dstPR
ID:dstPR

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q EX

dstPR
dstVal.

WB

RR

WB

Decode
dest. reg

ID:incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

Re
co

ve
r

EA*

A1

M1

ME*

* Were called
L1 and L2.

(a) Where is the logic for finding the (data) dependencies that requiring bypassing most likely to be?

Indicate on diagram.

(b) Suppose due to a manufacturing error every entry in the ID register map is initialized to 12 after each
reset, but the commit register map was properly initialized. Initial register values are not defined, so getting
the wrong value for a register that was never written is not a problem here.

Which code fragment below is more likely to encounter a problem? Hint: It has something to do with

the connection from the ID Register Map to the ROB.

Fragment A

add r1, r2, r3

add r2, r1, r5

add r1, r6, r7

add r2, r8, r9

nop

..

Fragment B

add r0, r2, r3

add r0, r1, r5

nop

...

Explain what goes wrong.

Suppose millions of these defective implementations have already been manufactured. Suppose when
turned on the processor starts executing code at address 0x1000. What code could be put there to fix the
problem? (It’s not one of the fragments above because one of them only avoids it, later code could still
trigger it.) Hint: There’s enough room for the answer below.

6

Problem 5: The diagram below is for a 64-MiB (226-character) set-associative cache on a system with the
usual 8-bit characters. (15 pts)

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU
Addr

Data

Data

 Addr
Out

Tag

 Addr

=Tag

Valid
Data

 Addr
Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

:

::5 .

:63:2416

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Associativity:

Memory Needed to Implement (Indicate Unit!!):

Line Size (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

7

Problem 5, continued: For the problems on this page use the cache from the previous page.

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

What is the hit ratio running the code below? Explain

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

int i;

int ILIMIT = 1 << 10; // = 210

for(i=0; i<ILIMIT; i++) sum += a[i * 4];

(c) The code below also runs in the cache from part a. Find the minimum values of JLIMIT and JSTRIDE

that will result in the code below having a 0% hit ratio.

JSTRIDE and JLIMIT

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

int i, j;

int ILIMIT = 1 << 10;

int JLIMIT = // FILL IN

int JSTRIDE = // FILL IN

for(i=0; i<ILIMIT; i++)

for(j=0; j<JLIMIT; j++)

sum += a[i + j * JSTRIDE];

8

Problem 6: Answer each question below.

(a) In MIPS, SPARC, and many other RISC ISAs memory accesses are aligned and so any instruction that
uses an un-aligned address, such as 0x1001 for a MIPS word, will raise an exception usually resulting in the
program exiting with a Bus Error.

Perhaps due to the stress of an upcoming code freeze for a product release, a mysterious programmer at
Software Company X secretly hacked the operating system of their SPARC computers so that loads and
stores to un-aligned addresses would complete correctly, as though un-aligned accesses were not forbidden.
There would be no more bus errors. (5 pts)

How might the mysterious programmer have done it?

Should Software Company X reward or punish the mysterious programmer? Explain.

(b) The SRAM used to implement caches is costly but in many cache designs can provide 1- or 2-cycle hit
latencies. If cost were not an issue, could one use SRAM for the entire memory system and get 1- or 2-cycle
latencies on all memory accesses?(5 pts)

Explain.

(c) Manufacturers have a great interest in having their processors score high in SPECcpu. Given this strong
interest how can we be sure that benchmark selection and the run & reporting rules have not been chosen
to favor a particular manufacturer? (This isn’t kindergarten, so “because it’s not allowed” is not a good
answer.)(5 pts)

Explain.

9

