
Name

Computer Architecture

EE 4720

Final Examination

8 May 2006, 10:00–12:00 CDT

Alias

Problem 1 (25 pts)

Problem 2 (25 pts)

Problem 3 (20 pts)

Problem 4 (30 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: The execution of code on a dynamically scheduled scalar MIPS implementation using Method
3 (the only one covered in class) is shown below. Beneath the diagram are signal labels, for example, ID:dst.
(25 pts)

(a) On the next page show the values of the signals at the cycles they are used.

• Some values are shown, they are needed to determine other values.

• All values can be determined.

• Ignore the distinction between integer and FP registers.

• The free list contents at cycle zero is shown on the lower right-hand side of the figure on the next
page.

25:21

20:16
rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

PC

ID:dst
ID:St: C,X

0,0

WB:ROB #
WB:C,X

Addr

D In

Re
or

de
r B

uf
fe

r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

Fr
ee

 L
ist

ID:dstPR
ID:dstPR

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q EX

dstPR
dstVal.

WB

RR

WB

Decode
dest. reg

ID:incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

Re
co

ve
r

EA*

A1

M1

ME*

* Were called
L1 and L2.

Tables for answer on next page.

2

Problem 1, continued:

25:21

20:16
rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

PC

ID:dst
ID:St: C,X

0,0

WB:ROB #
WB:C,X

Addr

D In
Re

or
de

r B
uf

fe
r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

Fr
ee

 L
ist

ID:dstPR
ID:dstPR

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q EX

dstPR
dstVal.

WB

RR

WB

Decode
dest. reg

ID:incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

Re
co

ve
r

EA*

A1

M1

ME*

* Were called
L1 and L2.

Free list at cycle zero: 47, 49, 61, 32, 50, 46, 73, 60, 48, 95

LOOP: # First Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOOP: # Second Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID:rsPR 56 30 30

ID:rtPR 63 54

ID:dst

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID:dstPR

ID:incmb

RR:rsPR

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RR:rtPR

WB:dstPR

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C:incmb

C:dstPR

C:dst

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3

Problem 1, continued: The diagram below is for the same code on the same system as the previous part,
except now three iterations are shown.

25:21

20:16
rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

PC

ID:dst
ID:St: C,X

0,0

WB:ROB #
WB:C,X

Addr

D In

Re
or

de
r B

uf
fe

r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

Fr
ee

 L
ist

ID:dstPR
ID:dstPR

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q EX

dstPR
dstVal.

WB

RR

WB

Decode
dest. reg

ID:incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

Re
co

ve
r

EA*

A1

M1

ME*

* Were called
L1 and L2.

LOOP: # First Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LOOP: # Second Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LOOP: # Third Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

(b) What is the CPI for a large number of iterations? Hint: It’s not 1.

CPI?

(c) Suppose the ROB can hold 256 entries and there are an unlimited number of physical registers. Assuming
a very large number of iterations, at about what cycle will fetch stall?

Fetch will stall at cycle ≈

(d) Would the code above run faster on a four-way superscalar dynamically scheduled system with the same
clock frequency and pipeline depth? Explain.

Circle One: Faster Not Faster.

Because

4

Problem 2: The code fragments below run on three systems which are identical except for the branch
predictor: One uses a bimodal predictor with a 214-entry BHT, one uses a local predictor with an 8-outcome
local history and a 214-entry BHT, and one uses a global predictor with an 8-outcome global history. (25 pts)

(a) Provide the information requested below.

• All accuracies are after warmup.

• For the warmup time show the approximate number of times the predicted branch needs to be
executed before the predictor reaches its warmup accuracy. Assume the 2-bit counters start out
at 0 or 3, whichever is worse.

BIG:addi r3, r0, 3

LP: bne r3, r0 LP # Iterates four times.

addi r3, r3, -1

lw r1,0(r2)

C2: beq r1, 0 SK # T N T T N T N T T N T N T T N T N T T N ...

nop

nop

SK: j BIG

addi r1, r1, 4

Bimodal: accuracy on C2:

Bimodal: warmup time on C2:

Local: accuracy of C2:

Local: warmup time on C2:

Local: smallest history size needed for 100% accuracy on C2:

Global: accuracy on C2:

Global: warmup time on C2:

Global: smallest history size needed for 100% accuracy on C2:

5

Problem 2, continued:

(b) The code below is similar to the code on the previous page except the four-iteration loop has been
replaced by two random branches. Each random branch will be taken with probability .5 and the outcome
is independent of everything, including the other random branch.

BIG:lb r3, 0(r4)

beq r3, r0 S2 # Random.

lb r3, 1(r4)

S2: beq r3, r0 S3 # Random.

addi r4, r4, 2

S3: nop

lw r1,0(r2)

C2: beq r1, 0 SK # T N T T N T N T T N T N T T N T N T T N ...

nop

nop

SK: j BIG

addi r1, r1, 4

Global: accuracy on C2:

Explain using GHR values.

Global: warmup time on C2:

Explain using GHR values.

Global: smallest history size needed for 100% accuracy on C2:

Explain using GHR values.

6

Problem 3: The diagram below is for a 64-MiB (226-character) 16-way set-associative cache on a system
with the usual 8-bit characters. (20 pts)

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU
Addr

Data

Data

 Addr
Out

Tag

 Addr

=Tag

Valid
Data

 Addr
Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

64 b

32 b

:9

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Memory Needed to Implement (Indicate Unit!!):

Line Size (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

7

Problem 3, continued: For the problems on this page use the cache from the previous page.

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

What is the hit ratio running the code below? Explain

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

int i;

int ILIMIT = 1 << 27; // = 227

for(i=0; i<ILIMIT; i++) sum += a[i];

for(i=0; i<ILIMIT; i++) sum += a[i];

(c) The slightly different code below runs on the same cache as the first part of this problem. Initially the
cache is empty; consider only accesses to the array.

Find the hit ratio. Very briefly explain.

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

int i;

int ILIMIT = 1 << 27;

for(i=0; i<ILIMIT; i++) sum += a[i];

for(i=ILIMIT-1; i>=0; i--) sum += a[i];

8

Problem 4: Answer each question below.

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPCInt Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+ 15:0 29:0

0
1

2

(a) The execution of some code
fragments on the illustrated im-
plementation appear below. Ex-
plain why each execution is im-
possible and show a corrected
pipeline execution diagram. (7 pts)

Cycle 0 1 2 3 4 5 6

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r3 IF -> ID EX ME WB

Fix.

Was impossible because:

Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r3 IF ID -> EX ME WB

xor r5, r6, r7 IF ID -> EX ME WB

Fix.

Was impossible because:

add.d f0, f2, f4 IF ID A1 A2 A3 A4 ME WB

Fix.

Was impossible because:

9

(b) For each feature below indicate whether it is usually a feature of the ISA or the implementation, and
explain why it’s not a feature of the other. (7 pts)

Feature: The opcode can be found in bits 31:26.

ISA or Implementation?

Why not the other?

Feature: The add in the code below will stall for one cycle.

lw r1, 0(r2)

add r3, r1, r4

ISA or Implementation?

Why not the other?

Feature: Two consecutive delayed (as in MIPS) branches will yield unpredictable results.

bneq r1, r2 DEST1

beq r3, r4 DEST2

addi r5, r6, r7

ISA or Implementation?

Why not the other?

Feature: Integer addition overflow raises exception.

ISA or Implementation?

Why not the other?

10

(c) Consider the use of a packed-operand 8-bit add (of the type described in class) to speed up the code
fragments below. For each fragment indicate whether it’s certainly feasible, feasible with certain assumptions,
or not feasible. (6 pts)

extern char *a, *b, *c;

for(i=0; i<1024; i++) a[i] = b[i] + c[i];

Circle One: No. Yes! Yes, assuming . . .

Explain.

extern int *a, *b, *c;

for(i=0; i<1024; i++) a[i] = b[i] + c[i];

Circle One: No. Yes! Yes, assuming . . .

Explain.

extern char *a, *b, *c;

for(i=1; i<1024; i++) a[i] = a[i] + a[i-1];

Circle One: No. Yes! Yes, assuming . . .

Explain.

11

(d) MIPS and other RISC ISAs typically have instructions using displacement addressing but lack register
deferred addressing. (See the examples below.)

lw r1, 4(r2) # Displacement addressing.

lw r1, (r2) # Register deferred addressing.

Given that RISC and CISC ISAs have displacement addressing:

(5 pts) Why is register deferred addressing helpful for CISC but not helpful for RISC?

(e) Dead-code elimination (DCE) is a common compiler optimization.

(5 pts) What is it? Illustrate using an example.

12

