
Name

Computer Architecture

EE 4720

Midterm Examination

Monday, 24 October 2005, 12:40–13:30 CDT

Alias

Problem 1 (50 pts)

Problem 2 (50 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: The partially completed routine on the next page is called with the address of a string which
may contain characters that look like letters, for example, “g0!1y.” The routine should replace those
characters with the letters they look like; the example would be converted to “golly.”

The string DMAP (see the next page) specifies the look-alikes. It specifies a letter (always lower case)
followed by one or more look-alike characters followed by a comma (possibly followed by another group). For
example, “o0,l1!,” indicates that the letter oh’s look-alike is the digit zero and the letter el’s look-alikes
are the digit 1 and an exclamation point.

The routine on the next page is almost finished. The part at the end uses a look-up table to translate the
string, and the part at the beginning has started setting up the look-up table. Write the code that finishes
setting up the look-up table based on DMAP. [50 pts]

Write the code that sets up the look-up table.

The code must be reasonably efficient.

The only synthetic instructions that can be used are nop and la.

Use the next page for the solution.

2

Register Usage

#

$a0: Procedure call argument. Address of string to translate.

There are no return values.

DMAP: .asciiz "o0,l1!,c([,t+,s$," # Translate 0->o, 1->l, !->l, (->c, etc.

LUT: .space 256

la $t0, LUT

addi $t1, $0, 255

First, initialize look-up table so every character is mapped to itself.

#

LOOP0: add $t3, $t0, $t1 # Compute address of LUT entry.

sb $t1, 0($t3) # Write default entry. (A->A, B->B, etc.)

bne $t1, $0 LOOP0

addi $t1, $t1, -1

Next, set up look-up table based on DMAP string. (Finish in solution.)

#

la $t0, DMAP

la $t1, LUT

addi $t5, $0, 44 # ’,’ Comma character separates groups.

Start solution here. (Can be done in 9 insn.)

Use the look-up table to translate the string.

la $t1, LUT

LOOP3: lb $t2, 0($a0) # Load character of string.

beq $t2, $0, EXIT2

add $t2, $t2, $t1 # Compute address of look-up table entry.

lb $t2, 0($t2) # Load translated character.

sb $t2, 0($a0) # Write translated character to string.

j LOOP3

addi $a0, $a0, 1

EXIT2: jr $ra

nop

3

Problem 2: Answer each question below. The instruction format descriptions are provided for reference.

MIPS R:

Opcode

31 26

RS

25 21

RT

20 16

RD

15 11

SA

10 6

Function

4 0

MIPS I:

Opcode

31 26

RS

25 21

RT

20 16

Immed

15 0

MIPS J:

Opcode

31 26

II

25 0

(a) A proposed new MIPS branch instruction compares a register value to a constant to determine if the
branch should be taken. For example, the branch below is taken if the contents of t1 is 123. [10 pts]

beqi $t1, 123, TARGET

nop

Why isn’t it feasible to code such an instruction using any of the existing MIPS formats?

How could a conditional control transfer instruction that compared a register to an immediate be coded
using the MIPS formats? (The instruction would be different than beqi.)

Show the instruction in assembly language.

4

(b) Show the results of addition for the 32-bit data types shown below. [10 pts]

Unsigned Integer:

0x0999

+ 0x0109

BCD:

0x0999

+ 0x0109

Packed 4-bit integers with saturating arithmetic.:

0x0999

+ 0x0109

(c) The MIPS ISA specifies that the sa (shift amount) field in the add instruction must be zero (an add

instruction with a non-zero sa field value should cause an execution error). [10 pts]

Describe a difficulty that might have arisen if the MIPS ISA had specified that implementations should
ignore the sa field in an add instruction (and so the sa field could contain any value).

Describe a difficulty that might have arisen if the MIPS ISA said nothing about the sa field in an add
instruction.

Describe a difficulty that might have arisen if the MIPS ISA did specify that sa must be zero but did not
say what should happen if the field were non-zero.

5

(d) Consider a benchmark suite that’s similar to SPECcpu in that the tester is responsible for compiling the
programs but that unlike SPEC, specifies that the tester should not use any optimizations when compiling
the benchmarks. [10 pts]

Compared to SPECcpu base and peak (result) scores, how useful would such results be? Explain.

(e) Using a new compiler optimization a program’s dynamic instruction count is cut in half. The values for
CPI, IC, and φ are available for a run of the program compiled without the new optimization. Other than
the instruction count, nothing has been measured for the program using the new optimization. How useful
is the CPU performance equation for estimating the run time with the new optimization on the same system
in this situation? Explain. [10 pts]

6

