
LSU EE 4720 Homework 5 Solution Due: 30 November 2005

Problem 1: The execution of a new MIPS instruction blcz TARG, branch unless loop count register is zero,
will result in a delayed control transfer to TARG unless the contents of a new register, lc, is zero; the target is
computed in the same way as ordinary branch instructions. Execution of blcz will also decrement lc unless
it is already zero. The lc register is loaded by two new instructions mtlc and mtlci. The code below uses
some of the new instructions and the diagram shows a possible implementation.

mtlc 100 # Load lc register for a 101-iteration loop

LOOP:

sw r0, 0(r1)

blcz LOOP # If lc is not zero branch to LOOP, lc = lc - 1.

addiu r1, r1, 4

format
immed

IR

Addr25:21

20:16

IF
ID

EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

25:0

29:26

29:0

01

lc =0

-1

15:0

(a) Re-write the code above using ordinary MIPS instructions and write it so that the loop uses as few
instructions as possible. Hint: A three-instruction loop body is possible.

The solution is on the next page.

1

http://www.ece.lsu.edu/ee4720/

Solution

#

Re-written code and pipeline execution diagram.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

addiu r2,r1,400 IF ID EX ME WB

LOOP:

sw r0, 0(r1) IF ID EX ME WB

bne r1, r2, LOOP IF ID -> EX ME WB

addiu r1, r1, 4 IF -> ID EX ME WB

Code below is a repeat of the code above.

sw r0, 0(r1) IF ID EX ME WB

bne r1, r2, LOOP IF ID -> EX ME WB

addiu r1, r1, 4 IF -> ID EX ME WB

sw r0, 0(r1) IF ID EX ME WB

bne r1, r2, LOOP IF ID -> EX ME WB

addiu r1, r1, 4 IF -> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Original code and pipeline execution diagram.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

mtlc 100 IF ID EX ME WB

LOOP:

sw r0, 0(r1) IF ID EX ME WB

blcz LOOP IF ID EX ME WB

addiu r1, r1, 4 IF ID EX ME WB

Code below is a repeat of the code above.

sw r0, 0(r1) IF ID EX ME WB

blcz LOOP IF ID EX ME WB

addiu r1, r1, 4 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) Using pipeline execution diagrams determine the speed of the sample program and your program from
the previous part. Only use bypass paths that have been provided.

The original code, which uses blcz, executes without a stall and so it executes at a rate of 0.333 stores per cycle (1 CPI). The
re-written code suffers stalls and so only executes at a rate of 0.24 stores per cycle (1.333 CPI).

Note that the question asked for the speed of the programs, not the CPI. Since the two programs do the same thing what’s
important is which one is faster (lower execution time). Since they both do the same number of stores the speed could be measured by
stores per cycle. CPI is not a good measure because it only indicates how efficiently the code is running. If two identical programs
are running on different processors the lower CPI (higher efficiency) would be faster. But since the programs are different CPI is not
useful in predicting speed.

2

(c) Unless the control logic is appropriately modified the implementation above may not realize precise excep-
tions for all integer instructions. In fact, the problem could occur in the example program. Explain what the
problem is and show a pipeline execution diagram in which the control logic insures that execution proceeds
so that exceptions will be precise. Hint 1: The exception does not occur in any of the new instructions. Hint

2: One of the two remaining instructions in the example can not raise an exception so it must be the other

one.

Part of Solution

Cycle 0 1 2 3 4 5 6 7 8 9

mtlc 100 IF ID EX ME WB

LOOP:

sw r0, 0(r1) IF ID EX M*x

blcz LOOP IF ID --> EX ME WB

addiu r1, r1, 4 IF --> ID EX ME WB

The integer instructions cannot raise precise exceptions with the blcz changes because the lc register is modified in ID, when
preceding instructions can still raise exceptions. If they do the handler will see the wrong value in lc.

In the example above sw raises an exception in cycle 4. For the exception to be precise the handler must see the execution of
only instructions up to sw, which here is only mtlc, and so the handler should see an lc value of 100. If blcz did not stall in cycle 3
lc would have been decremented and so the handler would have seen an lc value of 99, meaning the exception would not have been
precise.

3

(d) Modify the implementation so that precise exceptions are again possible for all integer instructions (while
retaining the loop count instructions) without sacrificing performance.

The modifications are shown below. Before the modifications lc would be both read and written in ID. To allow for stall-free
precise exceptions modify the implementation so that lc is written in WB, as are the other registers. Those changes are shown in
blue. When an instruction that modifies lc, blcz, mtlc, and mtlci, is in ID the new value of lc, rather than writing lc, is put in the
ID/EX.rtv pipeline latch. When such an instruction is in EX the ALU is set to pass the lower input through unchanged so that when
the instruction reaches WB the new lc value will be in the MEM/WB.ALU latch, that latch is connected to lc’s data input. A write

enable (we) input is also shown, it is based on the output of Writes lc , which is 1 for instructions that modify lc.
Bypass paths for the lc register are shown in purple.

format
immed

IR

Addr25:21

20:16

IF
ID

EX

WB

MEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

25:0

29:26

29:0

01

=0

-1

15:0

wlc
Writes lc

wlc wlc

we
lc

Changes for basic
operation.

Bypass
paths.

Grading Notes:
Some solutions tried to repair lc by decrementing its value when an exception is detected. This would fix the problem with

sw but won’t handle cases in which mtlc or mtlci write lc. Also, control logic would have to check if a blcz is in the EX and
possibly ID stages (depending on timing); many solutions did not point this out.

Another common incorrect solution was keeping the lc logic in ID but not modifying lc if a preceding instruction raises an
exception. That won’t work because when an instruction is in ID a doomed preceding instructions might not yet have raised an
exception, sw is an example. One solution was specific in specifying EX-stage hardware to see if the instruction their would raise a
memory-related exception when it reached MEM. That’s not possible without doing major damage to the critical path.

4

