[SUEE 4720

Problem 1:

Homework 4 sowtion

Due: 7 November 2005

The code below executes on the implementation illustrated.

(a) Draw a pipeline execution diagram up until the first fetch of the third iteration.

(b) What is the CPI for a large number of iterations?

D [(& EX MEM WB
mw ALU
25:21 —
Addr Datafp—f rsv | Mem
20:16 M
Addr Datafj—{ riv o8 ALUE | Port
—{ Addr
1799 pin 'L | fPata Data HMD
:—Df rv In__ Out URY
I

®L IMM

(Decode) dst dst dst

\ dest. reg

I N I

Solution:
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
addi r3, $0, 123 IF ID EX ME WB
LOOP:
1w r1, 0(r2) IF ID EX ME WB
bne r1, r3, LOOP IF ID ----> EX ME WB
1w r2, 4(r1) IF ----> ID EX ME WB
Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LOOP:
1w r1, 0(r2) IF ID -> EX ME WB
bne r1, r3, LOOP IF -> ID ----> EX ME WB
1w r2, 4(r1) IF ----> ID EX ME WB
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1w r1, 0(r2) IF ...

In the first iteration 1w r1, 0(xr2) executes without a stall but in the second iteration it stalls in ID and so the
Tirst iteration cannot be used to compute CPL. The second and third iterations start with the processor in the same state
(U\Q branch in EX and the second load in 1D, see cycles 6 and 12), and so the second iteration can be used to compute

the CPL.

i@ 12—=6 _ 6 __
The CPIis 1276 = 8 =2,

http://www.ece.lsu.edu/ee4720/

Problem 2: Is there any way to add bypass paths to the implementation above so that the code
executes with fewer stalls:

(a) Suggest bypass paths that might have critical path impact but which probably won’t halve the
clock frequency.

To avoid the braneh stall byp&SS the value from the OUIPM of the MEM-SVA%Q memory pOYI 10 the QO\”ﬂpMMOF in
ID, Shown in blue below. This will probably impact eritical path because the memory port is probably using the whole
QyQ\Q. 1T won't halve the clock TYQqUQﬁQy Dacause the Qompar'\son can be done qU\QK\y (QQYI&m\y less than g QyQ\Q Daecause
it ordinarily waits for the regjister fila).

(b) Explain why it is impossible to remove all stalls by adding bypass paths.

A Dypass path for the 1w r2, 4(r1) 10 1w rl, 0(r2) dependence would go from the output of the memory
port to the ALU input (shown in red below), each of those davices uses most of its clock cycle and $o elock frequency
would be halved. That's really bad and one should never do it, but it's not impossivle.

A Dypass to handle the 1w r1, 0(r2) to bne ri, r3, LOOP dependence isimpossible because the branch
needs the loaded value one cyele berore its available. For example, in the solution the branch needs the loaded value in
cyele 3, but the load instruction has not yet reached MEM.

129:26
2(a) - some
ID EX MEM \\critical path
_£-2(b) large critical path impact impact
l RrC i WB
+1 :?; Addr Data—f rsv | -
T ~—AAddr Dataf—q{ rtv o ALU
] Addl’ |
DlIn
:4[} rtv]
format
P I
Mem (Decode \ dst dst dst
\ dest. reg s s S
Port Data
Out
I I N I

Problem 3: The beqir instruction from the midterm exam solution compares the contents of the
rs register to the immediate, if the two are equal the branch is taken, the address of the branch
target is in the rt register. In the code example below beqir compares the contents of r3 to the
constant 123, if they are equal the branch is taken with register r1 holding the target address, in
this case to TARG. The delay slot, nop, is also executed.

(a) Show the changes needed to implement this instruction on the implementation above.

Ch&ﬂgQS shown below in blue. Two Qh‘&ﬂgQS were made. First, & mu\t‘\p\@xgr i8 pUl bafore Qompar'\son unit in 1D 1o
select either the 1t ng\StQY value (YQgU\QY DTQT\QT\QS) and the immediate (beqir). Second, the rt ng\SﬁQT value is sent to
the PC muxin IF.

(b) Include bypass paths so that the code below executes as fast as possible:

lui r1, hi(TARG)

ori rl, r1, 1lo(TARG)
beqir r3, 123, ri
nop

Lots more code.
TARG:
xor r9, ri0, riil

The code above has a dependence from ori to beqir. To bypass the value a Dypass path was added from EX to
ID, shown in . This bypass path may streteh the eritical path because two multiplexers have been added to the path
at the output of the ALU.

3(a) - b)zsic beqir
ID EX MEM WB
g =
’—U 1 ALU
25:21 -
+1 Addr Dataf-Hrsv 1 Mem
J 2078 pddr Data rv i 1Y | Port
,,: ~§ Addr
rfAddr p, ik | JData Data HMD,
JI —— vy ou ol
I
immed
(Decode
\ dest. reg dst oot %!
_— — E—

