
LSU EE 4720 Homework 4 Solution Due: 7 November 2005

Problem 1: The code below executes on the implementation illustrated.

(a) Draw a pipeline execution diagram up until the first fetch of the third iteration.

(b) What is the CPI for a large number of iterations?

format

immed

IR

Addr

25:21

20:16

IF

ID
 EX
 WB
MEM

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst
Decode

dest. reg

NPC

=

30
 2

"0"

+

15:0

25:0

29:26

29:0

0
 1

Solution:

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

addi r3, $0, 123 IF ID EX ME WB

LOOP:

lw r1, 0(r2) IF ID EX ME WB

bne r1, r3, LOOP IF ID ----> EX ME WB

lw r2, 4(r1) IF ----> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOOP:

lw r1, 0(r2) IF ID -> EX ME WB

bne r1, r3, LOOP IF -> ID ----> EX ME WB

lw r2, 4(r1) IF ----> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lw r1, 0(r2) IF ...

In the first iteration lw r1, 0(r2) executes without a stall but in the second iteration it stalls in ID and so the
first iteration cannot be used to compute CPI. The second and third iterations start with the processor in the same state
(the branch in EX and the second load in ID, see cycles 6 and 12), and so the second iteration can be used to compute

the CPI. The CPI is 12−6

3
= 6

3
= 2.

http://www.ece.lsu.edu/ee4720/

Problem 2: Is there any way to add bypass paths to the implementation above so that the code
executes with fewer stalls:

(a) Suggest bypass paths that might have critical path impact but which probably won’t halve the
clock frequency.

To avoid the branch stall bypass the value from the output of the MEM-stage memory port to the comparator in
ID, shown in blue below. This will probably impact critical path because the memory port is probably using the whole
cycle. It won’t halve the clock frequency because the comparison can be done quickly (certainly less than a cycle because
it ordinarily waits for the register file).

(b) Explain why it is impossible to remove all stalls by adding bypass paths.
A bypass path for the lw r2, 4(r1) to lw r1, 0(r2) dependence would go from the output of the memory

port to the ALU input (shown in red below), each of those devices uses most of its clock cycle and so clock frequency
would be halved. That’s really bad and one should never do it, but it’s not impossible.

A bypass to handle the lw r1, 0(r2) to bne r1, r3, LOOP dependence is impossible because the branch
needs the loaded value one cycle before its available. For example, in the solution the branch needs the loaded value in
cycle 3, but the load instruction has not yet reached MEM.

format

immed

IR

Addr

25:21

20:16

IF

ID
 EX

WB

MEM

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst
Decode

dest. reg

NPC

=

30
 2

"0"

+

15:0

25:0

29:26

29:0

0
 1

2(a) - some

critical path

impact
2(b) large critical path impact

Problem 3: The beqir instruction from the midterm exam solution compares the contents of the
rs register to the immediate, if the two are equal the branch is taken, the address of the branch
target is in the rt register. In the code example below beqir compares the contents of r3 to the
constant 123, if they are equal the branch is taken with register r1 holding the target address, in
this case to TARG. The delay slot, nop, is also executed.

(a) Show the changes needed to implement this instruction on the implementation above.
Changes shown below in blue. Two changes were made. First, a multiplexer is put before comparison unit in ID to

select either the rt register value (regular branches) and the immediate (beqir). Second, the rt register value is sent to
the PC mux in IF.

(b) Include bypass paths so that the code below executes as fast as possible:

lui r1, hi(TARG)

ori r1, r1, lo(TARG)

beqir r3, 123, r1

nop

Lots more code.

TARG:

xor r9, r10, r11

The code above has a dependence from ori to beqir. To bypass the value a bypass path was added from EX to
ID, shown in green. This bypass path may stretch the critical path because two multiplexers have been added to the path
at the output of the ALU.

format

immed

IR

Addr

25:21

20:16

IF
 ID
 EX
 WB
MEM

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst
Decode

dest. reg

NPC

=

30
 2

"0"

+

15:0

25:0

29:26

29:0

0
 1

3(a) - basic beqir
 3(b) - bypass for faster beqir

