
Name

Computer Architecture

EE 4720

Final Examination

10 May 2005, 15:00–17:00 CDT

Alias

Problem 1 (25 pts)

Problem 2 (15 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: (25 pts) The madd.s fd, fr, fs, ft instruction writes floating-point register fd with
(fr×fs)+ft. The fr field is in bits 25:21, the other fields are in their usual places. The instruction is used
in the code below:

With ordinary instructions:

mul.s f1, f2, f3

add.s f1, f1, f4

With a madd.s instruction:

madd.s f1, f2, f3, f4

(a) Add datapath connections (including any connections to the register file) to the implementation on the
next page (also shown below) to implement the madd.s instruction. The code below should execute as shown
(pay attention to f4).

madd.s f1, f2, f3, f4 IF ID M1 M2 M3 M4 M5 M6 A1 A2 A3 A4 WF

lwc1 f4, 0(r2) IF ID EX ME WF

add.s f5, f6, f7 IF ID A1 A2 A3 A4 WF

• Use the existing multiplier and adder.

• It should still be possible to execute ordinary floating point multiply and add instructions.

(b) Modify the logic so that xw, we, and fd work correctly for the madd.s instruction (and continue to work
correctly for existing instructions).

(c) Without a madd.s instruction there is no possible structural hazard on WF in the implementation below
for multiply because multiply is the longest latency instruction implemented. With madd.s that’s no longer
true, add control logic to detect this new structural hazard and generate the Stall ID signal.

SOLVE PROBLEM ON THE NEXT PAGE.

format

immed

IR

Addr

25:21

20:16

IF
 EX
 WB
MEM

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst
Decode

dest. reg

NPC

Int Reg File

FP Reg File

fd
fd

WF

Addr
 Data

D In
WE

Addr

Addr

Data

fsv

ftv

15:11

20:16
 M6

we
 we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3
A2
A1

M3
 M4
 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw
 xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"

"2"

"1"

30
 2

"0"

+
 15:0

29:0

0

1

2

SOLVE PROBLEM ON THE NEXT PAGE.

2

Problem 1, continued:

Datapath for madd.s, don’t break add.s or mul.s.

Code on previous page must run as shown.

Modify xw, we, and fd for madd.s, don’t break other instructions.

Detect and handle new structural hazard when mul.s in ID.

format

immed

IR

Addr

25:21

20:16

IF
 EX
 WB
MEM

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst
Decode

dest. reg

NPC

Int Reg File

FP Reg File

fd
fd

WF

Addr
 Data

D In
WE

Addr

Addr

Data

fsv

ftv

15:11

20:16
 M6

we
 we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3
A2
A1

M3
 M4
 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw
 xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"

"2"

"1"

30
 2

"0"

+
 15:0

29:0

0

1

2

3

Problem 2: (15 pts) The execution of a MIPS program on a dynamically scheduled system using method
3 appears below. Complete the ID Register Map, Commit Register Map, and Physical Register File tables
for registers f2 and f4.

• The initial value of f2 is 2.0, the mul writes 2.1, ldc1 writes 2.2, and sub.d writes 2.3. The initial
value of f4 is 4.0, the add writes 4.1. Make up physical register numbers as needed.

As always, show table contents.

Show where registers are removed from and placed back in the free list.

Show initial values.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f4, f6 IF ID Q RR M1 M2 M3 M4 WF C

add.d f4, f2, f10 IF ID Q RR A1 A2 A3 WF C

ldc1 f2,0(r1) IF ID Q EA ME WF C

sub.d f2, f2, f8 IF ID Q RR A1 A2 A3 WF C

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID Register Map

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Commit Register Map

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Physical Register File

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HARDWARE SHOWN ON NEXT PAGE.

4

Problem 2, continued: Dynamically scheduled processor shown for reference.

25:21

20:16

rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem

Port

Addr

Data

PC

P
C

ID
:dst

ID
:S

t: C
,X

0,0

WB:ROB #

WB:C,X

Addr

D In

R
eo

rd
er

 B
uf

fe
r

C:dst
Control

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #

tail

head
 WB

C

ID
IF

rtPR

Fr
ee

 L
is

t

ID
:dstP

R

ID
:dstP

R

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr

D In

rsPR

rtPR

rsVal

rtVal

Physical

Register File

Op, dstPR, ROB#

Out
In

Scheduler

Q
 EX

dstPR

dstVal.

WB

RR

WB

Decode

dest. reg

ID
:incm

b

Addr

Addr

Data

Data

Addr

D In

D Out

ID:dst

ID:incmb

ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

R
ec

ov
er

EA*

A1

M1

ME*

* Were called

L1 and L2.

5

Problem 3: (20 pts) The code below runs on three systems, one using a bimodal predictor (B) with a
210-entry BHT, a local predictor (L) with a 210-entry BHT and a 16-bit local history, and a global predictor
(G) with a 16-bit GHR. The outcomes of B2 are shown, pay attention to where B1’s outcomes would be
located.

LOOP:

SHORT:

B1 Iterates 10 times

B1: bne r3,r4 SHORT

addi r4, r4,1

...

B2: beq r1, r2 SKIP N N T N T N N T N T ...

...

SKIP:

j LOOP

nop

(a) Find the prediction accuracy of each predictor on each branch. Briefly explain.

Accuracy predicting B1 on B:

Accuracy predicting B1 on L:

Accuracy predicting B1 on G:

Accuracy predicting B2 on B:

Accuracy predicting B2 on L:

Accuracy predicting B2 on G:

(b) Determine the number of table entries used by branch B2 on each predictor:

Entries for B2 on B:

Entries for B2 on L:

Entries for B2 on G:

(c) Suppose the history sizes were reduced.

What is the smallest local history size for which the accuracy on B2 will be unchanged (from the previous
answer) when using the local predictor. Briefly explain.

What is the smallest global history size for which the accuracy on B2 will be unchanged when using the
global predictor. Briefly explain.

6

Problem 4: The diagram below is for a 256-kiB (218 byte) 4-way set-associative cache with a line size of
16 characters on a system with 8-bit characters. (20 pts)

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram. Pay attention to the width of the CPU address port.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=
Tag

Valid

Data

 Addr

Tag

 Addr

=
Tag

Valid

Hit

Out

Out

Out

64 b

44 b

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

7

Problem 4, continued:

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

What is the hit ratio?

double sum = 0.0, *a = 0x2000000; // sizeof(double) = 8 characters

int i, j, ILIMIT = 0x1000000;

for(j=0; j<2; j++)

for(i=0; i<ILIMIT; i++)

sum += a[i];

The code in the problems below is to be run on a cache of unknown configuration, though it will be one of the
types discussed in class (direct mapped or set-associative). In all cases the cache is empty when the program
starts. Routine get miss count() returns the number of cache misses at the time of the call (and does not
cause any misses).

(c) Complete the code so that line size is assigned the correct line size based on the number of misses
encountered and the nature of the code. Assume that all misses are due to access to a.

int ILIMIT = 0x10000;

char *a;

int miss_count_before = get_miss_count();

for(i=0; i<ILIMIT; i++) sum += a[i];

int miss_count_during = get_miss_count() - miss_count_before;

int line_size = // FILL IN

(d) Complete the code so that associativity is aptly assigned. Assume that the cache is smaller than 256
MiB (228)(but the exact size is not known), that the associativity is no larger than 64, and that there is a
64-bit address space.

int ISHIFT = // FILL IN

int JSHIFT = // FILL IN

char *a; // Pointer to a really large array.

int miss_count_before = get_miss_count();

for(i=0; i<64; i++) sum += a[i << ISHIFT];

for(j=) // FILL IN

sum += a[j << JSHIFT];

int miss_count_during = get_miss_count() - miss_count_before;

int associativity = // FILL IN

8

Problem 5: Answer each question below.

(a) Suppose in a five-stage statically scheduled MIPS implementation (like the one in class) an instruction
could raise an exception in the WB stage. Explain why that would make precise exceptions for that instruc-
tion impossible. Use a code example to explain what should happen for a precise exception and why its
impossible (or very difficult) if the exception is raised in WB. (5 pts)

(b) Arrange the ISA families below in order by code (program) size, the one for which programs are smallest
should be first. Starting at the second ISA in the arranged list, explain why code size is larger than the ISA
above. (That is, provide three reasons why code size is larger.) (5 pts)

ISA families (in alphabetical order): CISC RISC Stack VLIW

ISA families in code size order.

Reasons for size differences.

9

(c) Deciding on a line size for a cache is a tough decision. (5 pts)

Describe the behavior of programs that run better on caches with smaller line sizes.

Describe the behavior of programs that run better on caches with larger line sizes.

(d) Answer the following question on cost.(5 pts)

Name two parts of an n-way superscalar processor that cost about n times as much as a comparable
scalar processor.

Name two parts of an n-way superscalar processor that cost about n
2 times as much as a comparable

scalar processor.

10

