
Name Solution

Computer Architecture

EE 4720

Final Examination

6 December 2004, 7:30–9:30 CST

Alias EE MVDCCXX

Problem 1 (15 pts)

Problem 2 (25 pts)

Problem 3 (25 pts)

Problem 4 (10 pts)

Problem 5 (25 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: The MIPS code below executes as shown on the illustrated dynamically scheduled scalar
implementation. There are no exceptions or recoveries; the result (value to be written in r2) of the first
instruction is 101, the second is 102, etc. (15 pts)

25:21

20:16

rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

P
C

ID
:dst

ID
:S

t: C
,X

0,0

WB:ROB #

WB:C,X
Addr

D In

R
eo

rd
er

 B
uf

fe
r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

F
re

e
Li

st

ID
:dstP

R
ID

:dstP
R

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q
EX

dstPR

dstVal.

WB

RR

WB

Decode
dest. reg

ID
:incm

b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

R
ec

ov
er

EA*

A1

M1

ME*

* Were called
L1 and L2.

©Show where each instruction commits.©The initial value of r1 is 111 and the initial value of r2 is 222. Fill in the tables to show these values.©Complete the tables for the execution of the code. Take into account the results (see first paragraph).©Show where registers are removed from and put back in the free list.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
lw r2, 0(r4) IF ID Q RR EA ME WB C
add r1, r2, r3 IF ID Q RR EX WB C
sw r1, 0(r4) IF ID Q RR EA ME WB C
xor r2, r5, r3 IF ID Q RR EX WB C
and r2, r2, r6 IF ID Q RR EX WB C
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
ID Map

Reg Initial PR
r1 17 66
r2 43 63 83 88

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
Commit Map

Reg Initial PR
r1 17 66
r2 43 63 83 88

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
Physical Register File

PR Initial State
17 111 r1]
43 222 r2]
63 [r2 101]
66 [r1 102
83 [r2 104]
88 [r2 105

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

2

The solution is shown on the previous page. This problem is uninteresting and so it would be a good first study problem for those
reading this in the future.

Common Mistake: Allocating a register for sw. The sw instruction does not write a register and so it is not allocated a physical
register.

Common Mistake: Freeing the wrong register. When an instruction commits the correct physical register to free is not the one
assigned to the instruction but the incumbent, the previous one assigned to the same register. For example when the add, which
was assigned physical register 66, commits it is physical register 17 which gets tossed back into the free list. The incumbent can be
found in the commit (or ID) map to the left of the register assigned to the instruction.

3

Problem 2: An extended version of MIPS, called MMMIPS, includes memory-to-memory (MM) arithmetic
instructions that can read the first source operand from memory and write a result to memory; the second
source operand is always an immediate and the MM’s are encoded in format I. Their mnemonics end with
.mm, .mr, or .rm and they operate as described in the comments below. (25 pts)
lw r1, 2(r3) # r1 = Mem[r3+2] (Existing instruction, for your reference.)
add.mm (r4),(r5), 3 # Mem[r4] = Mem[r5] + 3
sub.rm r6, (r7), 3 # r6 = Mem[r7] + 3
or.mr (r8), r9, 3 # Mem[r8] = r9 + 3

(a) Shown below is a partially completed implementation of MMMIPS. It includes a new stage, MS (the S
is for source), that has a memory port for the source operand, shown unconnected. For use in a later part of
this problem, boxes mem src and mem dst identify an instruction as having a memory source operand
(output 1) or a memory destination operand (output 1) (an instruction can have both). An output of 0
means the respective operand is not from or to memory.©Connect the MS-stage memory port for the MM instructions.©Modify connections to the MEM-stage memory port for the MM instructions.©Make sure existing MIPS load and store instructions continue to work correctly.©For this part don’t add bypassing or control logic.

format
immed

IR

Addr
25:21

20:16

IF
ID EX WB

MEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

D out

rtv

dst dst
Decode
dest. reg

30 2
"0"

+
15:0

25:0

29:26

29:0

Addr

Mem
Port

D out

Addr

D in

Mem
Port

D out

ALU

MD

dstdst

rsv

rtv

IMM

MS

mem dst
mem src

(rsv)

=

mem dst

mem src

mem dst

BYP

part (a)

part (b):
existing
bypass
used in
cycle 4

part (c): Bad idea, critical-path-busting bypass, use in cycle 3 if you must.

part (a)

part (d): added control
logic for existing bypass

connection.

part (d) existing bypass used in cycle 4.

Solution to this part appears above in green along with solution to other parts.

4

For the problems below use either the diagram below or the one on the previous page.

format
immed

IR

Addr
25:21

20:16

IF
ID EX WB

MEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

D out

rtv

dst dst
Decode
dest. reg

30 2
"0"

+
15:0

25:0

29:26

29:0

Addr

Mem
Port

D out

Addr

D in

Mem
Port

D out

ALU

MD

dstdst

rsv

rtv

IMM

MS

mem dst
mem src

(rsv)

=

mem dst

mem src

mem dst

BYP

part (a)

part (b):
existing
bypass
used in
cycle 4

part (c): Bad idea, critical-path-busting bypass, use in cycle 3 if you must.

part (a)

part (d): added control
logic for existing bypass

connection.

part (d) existing bypass used in cycle 4.

(b) Add a bypass connection so that the code below can execute without a stall or show which existing bypass
connection can be used.©Add or identify the connection.©Show which cycle the bypass connection is used.
Cycle 0 1 2 3 4 5 6
add r1, r2, r3 IF ID MS EX ME WB
sub.mr (r1), r4, 5 IF ID MS EX ME WB

The value can use the exiting MEM-to-EX bypass connection, the bypassed value goes through the mux to EX/MEM.rtv. The value
would be bypassed in cycle 4 for use in the memory write in cycle 5.

(c) Can a bypass connection be added for the code below? If yes, should it be added? Explain.©Show how and/or explain why not.

Cycle 0 1 2 3 4 5 6
add r1, r2, r3 IF ID MS EX ME WB
sub.rm r6, (r1), 5 IF ID MS EX ME WB

Yes it can be added, but it shouldn’t because of critical path impact. Added connection is shown above in red.

The subtract needs the address in the beginning of cycle 3, while it’s in MS, but the value is computed at the end of cycle 3. If a
bypass connection were provided then the cycle time would have to be long enough for both an add and a memory access, substantially
lowering the clock frequency.

5

(d) Show the bypass connections (if any) and control logic so that the code below executes without a stall
(and without causing other instructions to execute incorrectly, of course). The control logic should deliver
a BYPASS signal to the EX stage at the right time, it should be 1 if a bypass of the type needed below is
necessary. Do not connect it to anything.©Show the control logic generating BYPASS.©Add the bypass connection or show which existing one would be used.

r1 = 0x1000, r5 = 0x1000
Cycle 0 1 2 3 4 5 6
add.mr (r1), r2, 3 IF ID MS EX ME WB
sub.rm r4, (r5), 6 IF ID MS EX ME WB

The bypass is only necessary if the two addresses are the same and so the control logic must compare the addresses as well as checking
if the earlier instruction writes a memory location and the later one reads one. The control logic and existing bypass path are shown
above in blue.

6

Problem 3: Answer each question below. Be sure to check each code fragment for dependencies. (25 pts)

(a) Show a pipeline execution diagram for the code fragment below running on the usual statically scheduled
and bypassed scalar MIPS implementation. Note: Bypassing and static scheduling not mentioned in the
original exam.

Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2)

add r3, r1, r4

Solution:
Cycle 0 1 2 3 4 5 6
lw r1, 0(r2) IF ID EX ME WB
add r3, r1, r4 IF ID -> EX ME WB

©Solve this easy problem.

Grading Note: The original test omitted the kind of implementation. Some did it on an unbypassed statically scheduled, a few did it
on a dynamically scheduled system, and one on a superscalar statically scheduled implementation.

(b) The sub.s instruction below stalls in IF.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11
add.s f4, f5, f6 IF ID A1 A2 A3 A4 WF
sub.s f7, f4, f8 IF -------> ID A1 A2 A3 A4 WF
add.s f9, f10, f11 IF ID A1 A2 A3 A4 WF©What’s wrong about the stall?©Show correct execution.

It’s stalling because of the dependency through f4, but how could the implementation know that in cycle 1 to 4 if sub.s does not
yet been decoded. The correct execution appears below.

Solution
Cycle 0 1 2 3 4 5 6 7 8 9 10 11
add.s f4, f5, f6 IF ID A1 A2 A3 A4 WF
sub.s f7, f4, f8 IF ID -------> A1 A2 A3 A4 WF
add.s f9, f10, f11 IF -------> ID A1 A2 A3 A4 WF

7

Problem 3, continued:

(c) The code below executes on a dynamically scheduled machine of the type used in the first problem and
in class. The mul.s stalls in ID.

ROB initially empty.
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
add.s f4, f5, f6 IF ID Q RR A1 A2 A3 A4 WF C
sub.s f7, f4, f8 IF ID Q RR A1 A2 A3 A4 WF C
mul.s f9, f10, f11 IF ID -------> Q RR M1 M2 M3 M4 M5 M6 WF C©What’s wrong about the stall?©Show correct execution.

This is a dynamically scheduled system and so sub.s waiting for an operand does not stall mul.s. Instruction sub.s moves out
of ID and into the instruction Q, and so mul.s is not blocked.

© If the “ROB initially empty.” comment was not there then the execution above would be possible,
albeit misleading. How would the stall be possible?

Dynamically scheduled systems stall when some resource is exhausted. The comment indicates that the three instructions have the
entire processor to themselves and so it’s unlikely that it has run out of anything. But without the comment there might be lots more
instructions present and so the processor might have run out of something, for example, ROB slots or physical registers. If it runs
out it must stall the instruction in ID. Unlike waiting in the instruction queue, this is a real stall of the fetch/decode pipeline that
will block later instructions.

(d) Show a pipeline execution diagram for the code below executing on a 2-way statically scheduled super-
scalar MIPS implementation. Note: In the original exam “statically scheduled” was omitted so an answer
for either type of system would be correct.

©Execution must be for decode logic of ordinary complexity. (See next item.)©Execution must allow precise exceptions.

solution
Cycle 0 1 2 3 4 5 6 7
0x1000:
lw r4, 0(r5) IF ID EX ME WB
add r1, r2, r3 IF ID EX ME WB
lh r6, 0(r4) IF ID -> EX ME WB
xor r7, r1, r9 IF ID -> EX ME WB
sll r10, r11, 12 IF -> ID EX ME WB
srl r14, r15, 16 IF -> ID EX ME WB

8

Problem 4: (10 pts) The diagram below is for a two-way set-associative cache on a system with 8-bit
characters. Answer the following, formulæ are fine as long as they consist of grade-time constants.©Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32 b

32 b

15:8 31:16

15:2

31:16

15:8

15:2

©Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 16

Index

15 8

Offset

7 2 1 0

©Cache Capacity (Indicate Unit!!):
Capacity is 2 × 216 characters (128 kiB).

©Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity plus 2 × 216−8(32 − 16 + 1) bits.

©Line Size (Indicate Unit!!):

Line size is 28 characters.

©Show the bit categorization for an eight-way cache with the same capacity and line size.

Address:

Tag

31 14

Index

13 8

Offset

7 2 1 0

9

Problem 5: Answer each question below.

(a) The register renaming technique used in the dynamically scheduled processor (what the register maps
do) solves a problem encountered when instructions execute out of order.(5 pts)©What is the problem and how does it solve it?©Provide an example showing what would go wrong without renaming.

The problem is that because instructions write back their results out of order and also read source registers out of order an instruction
might read the wrong register value because (1) a later instruction already wrote the same register, overwriting the value that was
supposed to be read, or (2) earlier instructions wrote the registers out of order. See the examples below. The solution is to assign a
different physical register to each instruction that writes a destination so that there is no ambiguity. The ID register map is used to
find which physical register is assigned to a given architected (from the ISA) register. Since the register map is read and updated in
program order it will be correct.

Case (1): add reads wrong value of r2.
add r1, r2, r3 ..RR.. # Ooops, got wrong r2.
sub r2, r4, r5 ..WB..

Case (2): xor reads wrong r1.

add r1, r2, r3 ..WB..
...
or r1, r6, r7 ..WB..
xor r8, r1, r9 ..RR.. # Ooops, got wrong r1.

(b) When it comes to caches one line size does not fit all.(5 pts)©When is it better to have larger line sizes (while holding cache size constant)? Explain how the larger
lines help.

When programs do alot of sequential access. The larger the line the more data is brought in on a cache miss. Since access is sequential
that data will soon be accessed if the missing instruction is part of a piece of code accessing data sequentially.

©When is it better to have smaller line sizes (while holding cache size constant)? Explain how larger lines
would hurt.

Suppose there is a miss on a system with large lines by a program doing no sequential access and with little spatial locality of any
kind. The accessed data will be read but the other data on the line will not, wasting cache capacity. It would not hurt to have smaller
line sizes since only the part which is first accessed is used, it would in fact help to have smaller lines because there would be more
of them, increasing the hit ratio in many cases.

10

(c) Why would the SPEC CPU benchmark suite be less useful if it contained one integer program and one
floating-point program? (5 pts)©Why not just one of each?

Different programs have different characteristics making it difficult to choose one typical program. It might happen that the chosen
program on a particular implementation does particularly well but that other programs don’t do as well on that implementation. So
if the suite had just one program it would not do a good job of predicting overall performance on a mix of programs.

(d) How would you answer a critic who said that the SPEC CPU benchmarks were rigged to make rich and
powerful company I’s products look good? (5 pts)©They are not rigged because . . .

. . . the benchmarks are chosen by SPEC members. Anyone can join SPEC and that includes I ’s competitors. If I were pushing
benchmarks that favored its products the other members of SPEC, with their own hardware to sell, would object and the benchmarks
would not be included in the suite.

Grading Note: The question is asking about the benchmarks themselves, some answered as though it were asking about the testing
procedures.

Some answered that they are not rigged because SPEC is a non-profit who’s mission is to provide fair tests. That does not make
them immune to being influenced. The Washington, DC phone book would be alot lighter if one removed all non-profits (PACs, etc)
that were not as impartial as they claim to be. What’s important for SPEC is that its members have competing interests and so they
will keep each other honest.

(e) What is the difference between a hardware interrupt, an exception, and a trap (as defined in class)?
(5 pts)©A hw interrupt’s unique feature.

It has nothing to do with what’s executing, it’s triggered by a signal on a special processor port.

©An exception’s unique feature.

It’s tied to a particular instruction in which there was some problem with execution.

©A trap’s unique feature.

It is an instruction, inserted to call a handler routine.

11

