
Name

Computer Architecture

EE 4720

Final Examination

6 December 2004, 7:30–9:30 CST

Alias

Problem 1 (15 pts)

Problem 2 (25 pts)

Problem 3 (25 pts)

Problem 4 (10 pts)

Problem 5 (25 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: The MIPS code below executes as shown on the illustrated dynamically scheduled scalar
implementation. There are no exceptions or recoveries; the result (value to be written in r2) of the first
instruction is 101, the second is 102, etc. (15 pts)

25:21

20:16

rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

P
C

ID
:dst

ID
:S

t: C
,X

0,0

WB:ROB #

WB:C,X
Addr

D In

R
eo

rd
er

 B
uf

fe
r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

F
re

e
Li

st

ID
:dstP

R
ID

:dstP
R

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q
EX

dstPR

dstVal.

WB

RR

WB

Decode
dest. reg

ID
:incm

b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

R
ec

ov
er

EA*

A1

M1

ME*

* Were called
L1 and L2.

Show where each instruction commits.

The initial value of r1 is 111 and the initial value of r2 is 222. Fill in the tables to show these values.

Complete the tables for the execution of the code. Take into account the results (see first paragraph).

Show where registers are removed from and put back in the free list.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
lw r2, 0(r4) IF ID Q RR EA ME WB
add r1, r2, r3 IF ID Q RR EX WB
sw r1, 0(r4) IF ID Q RR EA ME WB
xor r2, r5, r3 IF ID Q RR EX WB
and r2, r2, r6 IF ID Q RR EX WB
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
ID Map

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
Commit Map

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
Physical Register File

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

2

Problem 2: An extended version of MIPS, called MMMIPS, includes memory-to-memory (MM) arithmetic
instructions that can read the first source operand from memory and write a result to memory; the second
source operand is always an immediate and the MM’s are encoded in format I. Their mnemonics end with
.mm, .mr, or .rm and they operate as described in the comments below. (25 pts)
lw r1, 2(r3) # r1 = Mem[r3+2] (Existing instruction, for your reference.)
add.mm (r4),(r5), 3 # Mem[r4] = Mem[r5] + 3
sub.rm r6, (r7), 3 # r6 = Mem[r7] + 3
or.mr (r8), r9, 3 # Mem[r8] = r9 + 3

(a) Shown below is a partially completed implementation of MMMIPS. It includes a new stage, MS (the S
is for source), that has a memory port for the source operand, shown unconnected. For use in a later part of
this problem, boxes mem src and mem dst identify an instruction as having a memory source operand
(output 1) or a memory destination operand (output 1) (an instruction can have both). An output of 0
means the respective operand is not from or to memory.

Connect the MS-stage memory port for the MM instructions.

Modify connections to the MEM-stage memory port for the MM instructions.

Make sure existing MIPS load and store instructions continue to work correctly.

For this part don’t add bypassing or control logic.

format
immed

IR

Addr
25:21

20:16

IF
ID EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

D out

rtv

dst dst
Decode
dest. reg

30 2
"0"

+
15:0

25:0

29:26

29:0

Addr

Mem
Port

D out

Addr

D in

Mem
Port

D out

ALU

MD

dstdst

rsv

rtv

IMM

MS

mem dst
mem src

3

For the problems below use either the diagram below or the one on the previous page.

format
immed

IR

Addr
25:21

20:16

IF
ID EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

D out

rtv

dst dst
Decode
dest. reg

30 2
"0"

+
15:0

25:0

29:26

29:0

Addr

Mem
Port

D out

Addr

D in

Mem
Port

D out

ALU

MD

dstdst

rsv

rtv

IMM

MS

mem dst
mem src

(b) Add a bypass connection so that the code below can execute without a stall or show which existing bypass
connection can be used.

Add or identify the connection.

Show which cycle the bypass connection is used.
Cycle 0 1 2 3 4 5 6
add r1, r2, r3 IF ID MS EX ME WB
sub.mr (r1), r4, 5 IF ID MS EX ME WB

(c) Can a bypass connection be added for the code below? If yes, should it be added? Explain.

Show how and/or explain why not.

Cycle 0 1 2 3 4 5 6
add r1, r2, r3 IF ID MS EX ME WB
sub.rm r6, (r1), 5 IF ID MS EX ME WB

(d) Show the bypass connections (if any) and control logic so that the code below executes without a stall
(and without causing other instructions to execute incorrectly, of course). The control logic should deliver
a BYPASS signal to the EX stage at the right time, it should be 1 if a bypass of the type needed below is
necessary. Do not connect it to anything.

Show the control logic generating BYPASS.

Add the bypass connection or show which existing one would be used.

r1 = 0x1000, r5 = 0x1000
Cycle 0 1 2 3 4 5 6
add.mr (r1), r2, 3 IF ID MS EX ME WB
sub.rm r4, (r5), 6 IF ID MS EX ME WB

4

Problem 3: Answer each question below. Be sure to check each code fragment for dependencies. (25 pts)

(a) Show a pipeline execution diagram for the code fragment below running on the usual statically scheduled
and bypassed scalar MIPS implementation. Note: Bypassing and static scheduling not mentioned in the
original exam.

Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2)

add r3, r1, r4

Solve this easy problem.

(b) The sub.s instruction below stalls in IF.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11
add.s f4, f5, f6 IF ID A1 A2 A3 A4 WF
sub.s f7, f4, f8 IF -------> ID A1 A2 A3 A4 WF
add.s f9, f10, f11 IF ID A1 A2 A3 A4 WF

What’s wrong about the stall?

Show correct execution.

5

Problem 3, continued:

(c) The code below executes on a dynamically scheduled machine of the type used in the first problem and
in class. The mul.s stalls in ID.

ROB initially empty.
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
add.s f4, f5, f6 IF ID Q RR A1 A2 A3 A4 WF C
sub.s f7, f4, f8 IF ID Q RR A1 A2 A3 A4 WF C
mul.s f9, f10, f11 IF ID -------> Q RR M1 M2 M3 M4 M5 M6 WF C

What’s wrong about the stall?

Show correct execution.

If the “ROB initially empty.” comment was not there then the execution above would be possible,
albeit misleading. How would the stall be possible?

(d) Show a pipeline execution diagram for the code below executing on a 2-way statically scheduled super-
scalar MIPS implementation. Note: In the original exam “statically scheduled” was omitted so an answer
for either type of system would be correct.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11
0x1000:
lw r4, 0(r5)

add r1, r2, r3

lh r6, 0(r4)

xor r7, r1, r9

sll r10, r11, 12

srl r14, r15, 16

Cycle 0 1 2 3 4 5 6 7 8 9 10 11

Execution must be for decode logic of ordinary complexity. (See next item.)

Execution must allow precise exceptions.

6

Problem 4: (10 pts) The diagram below is for a two-way set-associative cache on a system with 8-bit
characters. Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32 b

32 b

15:8

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Cache Capacity (Indicate Unit!!):

Memory Needed to Implement (Indicate Unit!!):

Line Size (Indicate Unit!!):

Show the bit categorization for an eight-way cache with the same capacity and line size.

Address:

7

Problem 5: Answer each question below.

(a) The register renaming technique used in the dynamically scheduled processor (what the register maps
do) solves a problem encountered when instructions execute out of order.(5 pts)

What is the problem and how does it solve it?

Provide an example showing what would go wrong without renaming.

(b) When it comes to caches one line size does not fit all.(5 pts)

When is it better to have larger line sizes? Explain how the larger lines help.

When is it better to have smaller line sizes? Explain how larger lines would hurt.

8

(c) Why would the SPEC CPU benchmark suite be less useful if it contained one integer program and one
floating-point program? (5 pts)

Why not just one of each?

(d) How would you answer a critic who said that the SPEC CPU benchmarks were rigged to make rich and
powerful company I’s products look good? (5 pts)

They are not rigged because . . .

(e) What is the difference between a hardware interrupt, an exception, and a trap (as defined in class)?
(5 pts)

A hw interrupt’s unique feature.

An exception’s unique feature.

A trap’s unique feature.

9

