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Problem 1: The MIPS code below executes on the illustrated implementation. (19 pts)

• The implementation makes backup copies (not illustrated) of the ID map for each predicted
branch instruction.

• The implementation is scalar, but there can be any number of writebacks per cycle.
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The pipeline execution diagram on the next page shows the complete execution of the first instruction, a
branch, and partial execution of the others. (Because of instructions before it, the branch enters RR after a
wait of four cycles and commits after waiting another two.) The branch is mispredicted and some instructions
will have to be squashed.

(a) Complete the pipeline execution diagram.

©Show where instructions are squashed.

©Show correct path instructions.

©Show each instruction until it is squashed or commits.

(b) Complete the tables:

©Physical register file. Assume the result of the load is 101, xor is 102, and add is 103. You can make up
your own physical register numbers!

©Show where registers are removed from and put back in the free list.

©Complete the ID map. Don’t forget to include the effect of branch misprediction recovery.

©Complete the commit map.
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Problem 1, continued: Continued from previous page.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

bneq r1, r2 SKIP IF ID Q RR B WB C

lw r3, 0(r4) IF ID Q RR EA ME WB C

xor r3, r8, r6 IF ID Q RR EX WB x

SKIP:

add r3, r3, r7 IF ID Q RR EX WB x IF ID Q RR EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# ID Map

Reg Initial PR

r1 19

r2 20

r3 27 10 4 15 10 4

r4 2

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# Commit Map

Reg Initial PR

r1 19

r2 20

r3 27 10 4

r4 2

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Physical Register file

PR Initial State

2 [r4

4 ] [r3 102 x] [ 103

10 ] [r3 101 ]

15 ] [r3 103 x]

19 [r1

20 [r2

27 [r3 ]

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Branch Misprediction Recovery: The branch resolves (taken or not taken is determined) in cycle 8 but the misprediction recovery does
not start until WB. To recover from the misprediction the wrong-path instructions xor and add are squashed and the ID register
map is returned to the state it was when the branch was decoded (register r4 mapped to 10). In the next cycle fetch proceeds on the
correct path, fetching the add for a second time. The first time around, on the wrong path, the rs source for the add was mapped
to physical register 4; the second time around it maps to physical register 10. Note that the add is fetched twice even though it is
on both the taken and not-taken paths. It would be possible but probably not worth the trouble to build a processor that would not
have to fetch the add a second time in this situation.

Before recovery starts in cycle 10 the xor and add execute normally, unaware of the squash which they are fated to suffer.

Note: WB occurs as soon as the result is computed (after EX, ME, etc), it never stalls. In hand-solved problems there can be any
number of WB per cycle (to reduce tedium).

A common mistake was to show add being fetched once, it is fetched twice as explained above.
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Problem 2: Answer each question about the illustrated MIPS implementation. (18 pts)

(a) Complete a pipeline execution diagram for the code below running on the illustrated implementation.
Assume that any needed bypass connection is available and please check for dependencies.

# Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10

add.d f6, f2, f4 IF ID A1 A2 A3 A4 WF

add.d f4, f6, f2 IF ID -------> A1 A2 A3 A4 WF

Note that the stall is in ID, an IF stall for the second add.d is impossible because there is no way to detect the dependency while
the second add.d is still being fetched.

(b) In the diagram below add the bypass connection(s) needed for the code above. Do not add bypass
connections that are not needed. (Don’t worry if it’s a tight squeeze in the diagram, but be legible.)

Solution shown in red bold. The output of the added multiplexor connects to both A1 and M1, though the problem would be
correctly solved if it just connected to A1. By connecting it to both it can be used to bypass results to instructions that use the
multiply unit. Similarly, the input of the added multiplexor comes from the output of the WF mux, though it could have come from
the adder output in WF.

(c) Add control logic that generates the stall signal encountered in the code above.

Solution shown in blue bold. To generate a stall the hardware needs to detect a match between registers to be written back, in the
fd pipeline latches, and the fs register number. If there is a match between fs and the fd in A4, the value can be bypassed and
there is no need to stall. If there is no such match but there is a match between fs and an instruction in A1, A2, or A3 then a stall
signal is generated. A match between fs and fd is detected by comparing register numbers using a = and checking whether the
respective instruction writes anything at all, by looking at the WE (write enable) bit.

(d) Add control logic for the bypass multiplexor added in a previous part.

Solution shown in green bold. The logic used to generate the stall signal already checks if there is a match between fs and the
fd of the instruction in the stage before writeback. That signal is used as the multiplexor control signal. Note that when the mux
control signal is zero it will bypass otherwise it will use fsv.
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Problem 3: The following questions refer to the assembly language code below. Branch outcomes are
shown. (19 pts)

LOOP:

0x1000:

B1: beq r1,r2 SKIP1 T T T N N T T T N N T T T N N

nop !

add r5, r6, r7 A

SKIP1: !

# **Ten** arithmetic instructions only until next branch, no other instructions.

# !

B2: beq r3,r4 SKIP2 T N T N T N T N T N T N T N T N

nop

add r8, r9, r10

SKIP2:

add r11, r12, r13

j LOOP

nop

(a) Suppose the code above runs on a system using a bimodal branch predictor with a 256-entry branch
history table. What would be the best prediction accuracy of branch B1 and B2 after warmup. Hint: “Best”

applies to B2 but not B1.

©Accuracy of B1. Just 40%.

©Accuracy of B2. At best, 50%.

©Why is there a “best” accuracy?

For B2, if its entry in the BHT starts out at 1 it will mispredict B2 consistently, for an accuracy of 0%.

(b) Suppose the code above runs on a system using a local predictor with a 256-entry BHT. What is the
smallest local history size that would allow the two branches above to be predicted with 100% accuracy?

©Smallest size. Explain

The smallest local history size is three bits. If it were two bits then for B2 it could not distinguish the third consecutive taken from
the first not taken because both would have a local history of TT. With three bits the local history would be NTT for the third taken
and TTT for the first not-taken. Branch B1 would only need one bit (but in a real system that would interfere with other branches),
the local history would be the larger of the two, 3. Note that there would be no interference.
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Problem 3, continued:

(c) Suppose the code runs on a system using a gshare branch predictor with a 10-bit GHR. Show the contents
of the GHR at time A (see the right-hand side of the diagram).

©Gshare GHR contents:

The global history register would hold: NTNNTTTNTT, with the most recent outcome the rightmost character.

(d) Suppose the code runs on a PPC970 (or a POWER4) processor. Show the contents of what it uses for
a GHR at time A. State any assumptions. Note: This part based on a homework assigned Spring 2004, and

would not be asked other semesters.

©PPC970 GHR contents:

The PPC970 predictor GHR inserts one bit per fetch group, which has as many as eight instructions and must be contiguous. A fetch
group that does not contain a branch is treated like one having a not-taken branch.

To solve the problem one must figure out where the fetch groups are. Start at B2. That fetch group would end at B2+1 (the nop)
and start with one of the arithmetic instructions, B2-6. The table below shows the last ten fetch groups (before A). The GHR would
be TnTtTntTnT, as in the homework, an uppercase T or N is for a branch instruction, lower-case t is for the jump and lower-case
n is for a group of instructions without a control transfer.

Fetch Groups:

Instructions Branch/Jump/none Outcome

B1 to B1+1 B1 Taken: T

SKIP1 to B2-6 No cti. n

B2-6 to B2+1 B2 Taken: T

SKIP2 TO SKIP+2 Jump. t

B1 to B1+1 B1 Taken: T

SKIP1 TO SKIP2-6 NO cti. n

SKIP2-5 to SKIP2+2 B2 not taken, jump: t

B1 to B1+1 B1 Taken: T

SKIP1 to B2-6 No cti. n

B2-6 to B2+1 B2 Taken: T
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Problem 4: (19 pts) The diagram below is for a four-way set-associative cache on a system with 8-bit
characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

©Fill in the blanks in the diagram.
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but which nine bits?
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31:23

22:11

22:3

©Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 23

Index

22 11

Offset

10 3 2 0

©Cache Capacity (Indicate Unit!!):

Capacity is 4× 223 characters (32 MiB).

©Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity plus 4× 223−11(32− 23 + 1) bits.

©Line Size (Indicate Unit!!):

Line size is 211 characters.

Note: Too many gave “bits” for the unit (but meant characters).

©Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

31 25

Index

24 11

Offset

10 3 2 0

8



Problem 4, continued:

(b) The code below runs on the cache from the previous part. When the code below starts running the cache
is empty. Consider only accesses to the array and assume the cache is cold (empty) when the code starts.

short int *a = 0x1000000; // sizeof(short int) = 2 characters

int sum, i, j;

int ILIMIT = 1024;

for(j=0; j<2; j++)

for(i=0; i<ILIMIT; i++)

sum += a[ i ];

©What is the hit ratio for the program above?

The array element size is two characters (sizeof(short int). The line size is 211 = 2048 characters and so 1024 consecutive i
iterations will access the same line. The first access will miss, the rest will hit. So for the first j iteration the hit ratio is 1023/1024.
The total amount of memory accessed is 1024 characters, which is much smaller than the 32 MiB capacity so on the second j iteration
every access will hit.

The overall hit ratio is 1

2

(

1023

1024
+ 1

)

= 2047

2048
.

(c) Choose values for the address of b, ILIMIT, and ISTRIDE so that the cache is completely filled with the
minimum number of accesses. Note: The original exam read “minimum number of misses,” is easier to do.

The address of b must be greater than a and as small as possible.

short int *a = 0x1000000; // sizeof(short int) = 2 characters

int sum, i;

short int *b =

int ILIMIT =

int ISTRIDE =

for(i=0; i < ILIMIT; i++)

sum += a[ i * ISTRIDE ] + b[ i * ISTRIDE ];

The cache is four-way set associative with a tag field that starts at bit 22, which would be the fifth hexadecimal digit in the array
a’s starting address. To fill the array with the fewest accesses each array access must be to a different line, that is, no line can be

accessed twice. This can be achieved by setting ISTRIDE to half the line size. That is, ISTRIDE = 1 << 10; (that is, 210).
Half because the array element size is two and so, for example, a[0] and a[1] will be on different lines and the indices of those
lines will differ by 1. We would like a and b to access different lines and obviously a would load one half of the cache and b would

load the other half. Therefore b should be set to a’s address plus half the cache capacity and so b = a + ( 1 << 24 );

which is b = 0x200000; (that is, b = a + 4×2
23

2
= a + 2 × 223 = a + 224). There are many ways to determine what

ILIMIT should be. Using the approach taken so far, ILIMIT should be set so that a[0] to a[ILIMIT*ISTRIDE] is half the

cache capacity. Solve 2*ILIMIT*ISTRIDE==1<<24 or in math notation 2ilimitistride = 2
24, rearranging: iilimit =

2
24

2istride
,

substituting: iilimit =
2
24

2210 = 2
13. So ILIMIT = 1 << 13; .
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Problem 5: Answer each question below.

(a) One way to improve the performance of an implementation is to redesign the processor so that it uses
more stages. Increasing the number of stages beyond five will yield a big improvement in performance, but
at some point adding stages will have little effect.(5 pts)

©Give a reason for this limit having to do with the pipeline latches.

Signals must remain stable a certain amount of time at the input to a pipeline latch. In a five stage implementation the total time to
execute an instruction includes five of these delays. With more stages there will be more delay, and eventually this will be a majority
of the time needed to execute an instruction. One place this delay is seen is in misprediction recovery.

©Give a reason for this limit having to do with program characteristics.

If a functional unit is split across multiple stages then an instruction closely following and dependent on one using the unit must stall
on a statically scheduled implementation. Adding stages will only add stalls in such cases. This limiter of performance gain is more
severe for programs with more close dependencies. (If there are few close dependencies then there would be fewer stalls.) The limit
also applies to dynamically scheduled systems in which the rate at which instructions commit would not increase linearly with higher
clock frequency when there are enough dependencies.

(b) An instruction does not raise precise exceptions (because the ISA says it does not have to). (5 pts)

©Name something its handler cannot do (but could do if the exception were precise).

It cannot resume execution at the instruction immediately following the faulting instruction, nor can it re-execute the instruction
itself. This is because if exceptions are not precise the handler might be called when the program executes several instructions past
the faulting instruction.

(c) The code below uses an indirect load. Re-write it using MIPS instructions. (5 pts)

lw r1, @(r2) # Load using indirect addressing.

# Solution.

lw r1, 0(r2)

lw r1, 0(r1)
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(d) Every integer instruction that reads a GPR uses the rs and rt fields (or just one of them). What would
be the disadvantage of a modified ISA in which some instructions use other fields to specify GPR source
registers? (5 pts)

Multiplexors would be needed at the register file read ports to select the correct field for the instruction being decoded.

(e) Consider two options for the design of a load/store unit (LSU) for a dynamically scheduled system. The
aggressive option would execute the code below quickly, while the conservative option would execute it more
slowly. Hint: the conservative option is how the LSU was described in class. Note: The original problem

used r1 for the address, which was not intended, but the answer with r1 is similar.

(5 pts)

div.d f2, f4, f6

sw r1, 0(r9)

sh r2, 0(r9)

sb r3, 0(r9)

lw r4, 0(r9)

©What is it about that code that requires special treatment?

The value to load is spread across three stores, bits 31:24 from the store byte, bits 23:16 from the sh, and bits 15:0 from the sw
(assuming big-endian byte ordering).

©Describe how the aggressive option would execute the code.

An aggressive LSU would combine the data from the three stores when bypassing to the load.

©Give a brief argument for the conservative option, feel free to include made-up data (for the purposes of this

test only!).

Studies show that only 1% of loads [warning, made up data] get their data from multiple stores (as in the example above). The cost
of implementing an LSU that can handle such rare cases is high and so it is not worth implementing. The conservative solution would
be cheaper and would be almost as fast.
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