Name Solution

Computer Architecture

Midterm Examination Two

Wednesday, 19 November 2003, 10:40-11:30 CST

Problem1 (50 pts)
Problem2 (50 pts)
Alias Quecht Exam Total _ (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: In the diagram below some wires are labeled with cycle numbers and values that will then be

present. For example, indicates that at cycle 6 the pointed-to wire will hold a 9. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. There are no stalls during

the execution of the code.[50 pts]
M Write a program consistent with these labels.
M Show the address of every instruction.
M Show every register number that can be determined and use r10, r11, etc. for other register numbers.

M One immediate value and two register numbers are found in interesting ways.

C6: 0x00c32824 =
ID C2: 0x1200 0000 0000 1100 0011 0010 1000 0010 0100
%II i5 0

I E o5 Eromn
[s [s MEM WB
PC] NPC W & ALU
2521 Addr Data { rsv |-
+4 20:16 Addr Dataf-§ rtv | j @ SJALU
X
—f Addr DIn [l MD
PC
format @
immed /| MM @
Mem (dDecode 1A dst dst ! dst
Port \ est. reg }
giia IR IR IR IR

Solution shown below. Upper ease in an instruction name indicates something that is known for certain, lower case i for something
guessed but consistent with labels. For example, Sw means it's definitely 4 store but the size could be word, or something else (half
word, byte).

The 'HYLQTQSUﬂg p&l‘t was the load instruction. First of all, it's dQﬂth\y a 10ad word since the loaded value Spans more than 16 bits.
The effective address Qomputed by the load h&prﬂS 0 be the address of the first instruction, so 0x00¢32824 i3 NOL &ﬂy*()\(l data, but
the Tirst instruction. To determine the first instruction one has to hand-disassemble 0x00¢32824 (WmQh 18 Why it's shown in b‘mmy).
The zero OPQOGQ indicates that it is Ipr R (&S does its use of the rt ng\StQT in the EX Stﬁg‘é). The YQg\SIQY numbers are Qasy 1o
parse from its YQg\SIQY fleld. No one was QXPQQIQG to remember the function field value, full credit was g\VQﬂ for gett'mg the YQg\ST,QTS
righ.

The ofset of the load instruction is determined Dy subtracting r31's contents from the effective address, 0x1000. Since r31 is the
return address it must be 0x100c, 80 the difference is -12.

Cycle 01 2 3 4 5 6 7 8
0x1000 ADD R5, R6, R3 IF ID EX ME WB

0x1004 JALR r31, ri10 IF ID EX ME WB

0x1008 LW ri11, -12(r31) IF ID EX ME WB
0x1200 Sw r31, 0(r12) IF ID EX ME WB
0x1204 andI R4, ri11, 0x2000 IF ID EX ME WB

Problem 2: On the next page is a MIPS pipeline that implements the post-increment load instruction from
Homework 4. In the code below the post-increment loads load the data at the address in r2 into destination
register r1. They then store the address +4 (the address of the next word) in r2.

The implementation on the next page uses a register file with only one write port, just like in Homework 4.
The loaded value gets written back in the post-increment load’s writeback cycle, the incremented address
normally gets written back in the writeback cycle of the next instruction that does not itself perform write-
back. That may be the very next instruction, or several instructions later. Or never (see the cases below).
[50 pts]

(a) Design the control hardware for the five bold multiplexors (one in EX, two in WB, and two for the new
pipeline latch) so that the implementation correctly executes as many cases below as possible with as few
stall cycles as possible. Do not worry about exceptions.

(b) Design the logic to generate the stall signal needed for at least one case below and for similar cases. Stall
in as few cases as possible.

Pipeline segments provided for convenience. In at least
one case stalls will be necessary, AND THOSE STALLS ARE NOT SHOWN.

In examples focus on ri-r9.

Case 1: Ordinary case, use WB of branch.

Cycle: 01 2 3 4 5 6 7
1w r1, (r2)+ IF ID EX ME WB

add r12, ril, ri2 IF ID EX ME WB

bne r15,r16 SOMEWHERE IF ID EX ME WB
add r12, ril, ri2 IF ID EX ME WB

Case 2: Register r2 not needed.

Cycle: 01 2 3 4 5 6 7
lw r1, (r2)+ IF ID EX ME WB

add r12, ri1, ri2 IF ID EX ME WB

add r2, ri4, rib IF ID EX ME WB
add ri18, r2, ri19 IF ID EX ME WB

Case 3: Bypass needed.

Cycle: 01 2 3 45 6 7 8 9
1w 1, (r2)+ IF ID EX ME WB

add r12, ril, ri2 IF ID EX ME WB

add r12, ril, ri2 IF ID EX ME WB

add r12, r2, ril IF ID EX ME WB

bne r15,r16 SOMEWHERE IF ID EX ME WB
add r12, ril, ri2 IF ID EX ME WB

Case 4: Notice that base address registers different. (r2, r4)

Cycle: 01 2 3 45 6 7 8 9
1w 1, (r2)+ IF ID EX ME WB

1w r3, (r4)+ IF ID EX ME WB

add r12, ril, ri2 IF ID EX ME WB

add r12, ril, ri2 IF ID EX ME WB

bne r15,r16 SOMEWHERE IF ID EX ME WB
add r12, ril, ri2 IF ID EX ME WB

Case 5: Make sure this works correctly.

Cycle: 01 2 3 45 6 7 8
1w 1, (r2)+ IF ID EX ME WB

add r12, ril, ri2 IF ID EX ME WB

add r12, ril, ri2 IF ID EX ME WB

add r2, ri3, ri4 IF ID EX ME WB
add r18, r2, ri9 IF ID EX ME WB

Problem 2, continued:

e The control logic can be in any stage, not just ID.
e The logic is relatively simple, it should easily fit on the page.

Case used in solution diagram.

Case S:

Cycle: 01 2 3 4 5 6 7 8
1w r1, (r2)+ IF ID EX ME WB

add r12, r2, ri2 IF ID EX ME WB

bne r15,r16 SOMEWHERE IF ID EX ME WB

lw r4, (r5)+ IF ID EX ME WB

Solution shown below. Logic Tor bypass (F_X) multiplexor shown in blue, logic Tor the writeback muxen shown in red, logic controlling
the new deferred writeback (D\N) mu\t'\p\exors shown in green, and stall logic is in purple.

Aabel sueh as Case 5, Cycle 6indicates that the pointed-at wire is used in cyele 6 by the code in case 5 (Trom the previous p&gé).
(Th&('S an example of one time the wire is used, it may be used in other cases and at other t‘\mes.)

2 -Clear [|
C S,
Green: Logic for deferred write 1 - Load < DW Cisc/ee 6
(DW) multiplexors.
|
g 1 } ALU
Case 2,
(0 - Hold 5'b0 ("0") f i P crele s
no logic.) \ 0l
IE 50| D EX o N
])
Lﬁ [RrC =3) N MEM LU / °a
25:21 W] oL
Addr Dataff rsv |- g Mem
20:16 M1 1 s
Addr Dataffl rtv f— || 4 ALUR Port =y
0 "l Addr g. Q g g
(I 3%
—fAddr 5,] HNlpata pata v S3IRS
v D— rtv u In___Out @ % S; %
PC i WB| | =89
format YV 2
immed
Provides rs rs =0
Addr amount for 25:21)
p.i.l.
Mem (Decode) dst dst dst 1 K
Port Data R _dest. reg / &<
Out on |
=PIL pil pil
True if insn is post-
increment load.
Case 3, Cycle 5
N Stall (=0]
Blue: Logic for Case’s, % .))
bypass multiplexor. Cycle 6 Case 4, Cycle 4 Purple: Logic for stall signal.

