
Name Solution

Computer Architecture

EE 4720

Midterm Examination Two

Wednesday, 19 November 2003, 10:40–11:30 CST

Alias Ouch!!

Problem 1 (50 pts)

Problem 2 (50 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: In the diagram below some wires are labeled with cycle numbers and values that will then be
present. For example, C6:9 indicates that at cycle 6 the pointed-to wire will hold a 9. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. There are no stalls during
the execution of the code.[50 pts]

©Write a program consistent with these labels.

© Show the address of every instruction.

© Show every register number that can be determined and use r10, r11, etc. for other register numbers.

©One immediate value and two register numbers are found in interesting ways.

format
immed

IR

Addr
25:21

20:16

IR

IF
ID

EX
WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

15:0

C2: 0x1200

C4

C6

C2 C5

C1:5
C6: 0x2000

C7:4

C8

C6: 0x00c32824 =
0000 0000 1100 0011 0010 1000 0010 0100

C4: 0x1000

Solution shown below. Upper case in an instruction name indicates something that is known for certain, lower case is for something
guessed but consistent with labels. For example, Sw means it’s definitely a store but the size could be word, or something else (half
word, byte).

The interesting part was the load instruction. First of all, it’s definitely a load word since the loaded value spans more than 16 bits.
The effective address computed by the load happens to be the address of the first instruction, so 0x00c32824 is not any-old data, but
the first instruction. To determine the first instruction one has to hand-disassemble 0x00c32824 (which is why it’s shown in binary).
The zero opcode indicates that it is type R (as does its use of the rt register in the EX stage). The register numbers are easy to
parse from its register field. No one was expected to remember the function field value, full credit was given for getting the registers
right.

The offset of the load instruction is determined by subtracting r31’s contents from the effective address, 0x1000. Since r31 is the
return address it must be 0x100c, so the difference is -12.

Cycle 0 1 2 3 4 5 6 7 8
0x1000 ADD R5, R6, R3 IF ID EX ME WB
0x1004 JALR r31, r10 IF ID EX ME WB
0x1008 LW r11, -12(r31) IF ID EX ME WB
0x1200 Sw r31, 0(r12) IF ID EX ME WB
0x1204 andI R4, r11, 0x2000 IF ID EX ME WB

2

Problem 2: On the next page is a MIPS pipeline that implements the post-increment load instruction from
Homework 4. In the code below the post-increment loads load the data at the address in r2 into destination
register r1. They then store the address +4 (the address of the next word) in r2.

The implementation on the next page uses a register file with only one write port, just like in Homework 4.
The loaded value gets written back in the post-increment load’s writeback cycle, the incremented address
normally gets written back in the writeback cycle of the next instruction that does not itself perform write-
back. That may be the very next instruction, or several instructions later. Or never (see the cases below).
[50 pts]

(a) Design the control hardware for the five bold multiplexors (one in EX, two in WB, and two for the new
pipeline latch) so that the implementation correctly executes as many cases below as possible with as few
stall cycles as possible. Do not worry about exceptions.

(b) Design the logic to generate the stall signal needed for at least one case below and for similar cases. Stall
in as few cases as possible.

Pipeline segments provided for convenience. In at least
one case stalls will be necessary, AND THOSE STALLS ARE NOT SHOWN.
In examples focus on r1-r9.

Case 1: Ordinary case, use WB of branch.
Cycle: 0 1 2 3 4 5 6 7
lw r1, (r2)+ IF ID EX ME WB
add r12, r11, r12 IF ID EX ME WB
bne r15,r16 SOMEWHERE IF ID EX ME WB
add r12, r11, r12 IF ID EX ME WB

Case 2: Register r2 not needed.
Cycle: 0 1 2 3 4 5 6 7
lw r1, (r2)+ IF ID EX ME WB
add r12, r11, r12 IF ID EX ME WB
add r2, r14, r15 IF ID EX ME WB
add r18, r2, r19 IF ID EX ME WB

Case 3: Bypass needed.
Cycle: 0 1 2 3 4 5 6 7 8 9
lw r1, (r2)+ IF ID EX ME WB
add r12, r11, r12 IF ID EX ME WB
add r12, r11, r12 IF ID EX ME WB
add r12, r2, r11 IF ID EX ME WB
bne r15,r16 SOMEWHERE IF ID EX ME WB
add r12, r11, r12 IF ID EX ME WB

Case 4: Notice that base address registers different. (r2, r4)
Cycle: 0 1 2 3 4 5 6 7 8 9
lw r1, (r2)+ IF ID EX ME WB
lw r3, (r4)+ IF ID EX ME WB
add r12, r11, r12 IF ID EX ME WB
add r12, r11, r12 IF ID EX ME WB
bne r15,r16 SOMEWHERE IF ID EX ME WB
add r12, r11, r12 IF ID EX ME WB

Case 5: Make sure this works correctly.
Cycle: 0 1 2 3 4 5 6 7 8
lw r1, (r2)+ IF ID EX ME WB
add r12, r11, r12 IF ID EX ME WB
add r12, r11, r12 IF ID EX ME WB
add r2, r13, r14 IF ID EX ME WB
add r18, r2, r19 IF ID EX ME WB

3

Problem 2, continued:

• The control logic can be in any stage, not just ID.

• The logic is relatively simple, it should easily fit on the page.

Case used in solution diagram.
Case S:
Cycle: 0 1 2 3 4 5 6 7 8
lw r1, (r2)+ IF ID EX ME WB
add r12, r2, r12 IF ID EX ME WB
bne r15,r16 SOMEWHERE IF ID EX ME WB
lw r4, (r5)+ IF ID EX ME WB

Solution shown below. Logic for bypass (EX) multiplexor shown in blue, logic for the writeback muxen shown in red, logic controlling
the new deferred writeback (DW) multiplexors shown in green, and stall logic is in purple.

A label such as Case 5, Cycle 6 indicates that the pointed-at wire is used in cycle 6 by the code in case 5 (from the previous page).
(That’s an example of one time the wire is used, it may be used in other cases and at other times.)

format
immed

IR

Addr
25:21

20:16

IF ID EX

WB

MEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

rtv

dst dst
Decode
dest. reg

NPC

15:0

ALU

MD

dst

Addr

Data
In

Mem
Port

Data
Out

rsv

rs rs
25:21

=PIL pil pil

0

10

1

0

ALU

dst
5’b0 ("0")

0

1
2

0
1

1

0

1

True if insn is post-
increment load.

Provides
increment
amount for

p.i.l.

=0

=’

=0
Stall=’

=’

LS
B

M
S

B

2

2 - Clear

1 - Load

(0 - Hold,
no logic.)

Green: Logic for deferred write
(DW) multiplexors. DW

Blue: Logic for
bypass multiplexor. Purple: Logic for stall signal.

R
ed: Logic for

w
riteback of post-
increm

ented
address.

C
ase 1,

C
ycle 6

Case 2,
Cycle 5

Case 1,
Cycle 3

Case S,
Cycle 6

Case 5,
Cycle 6

Case 3, Cycle 5

Case 4, Cycle 4

4

