
LSU EE 4720 Homework 3 Due: 31 October 2003

Problem 1: Unlike MIPS, PA-RISC 2.0 has a post-increment load and a load using scaled-index
addressing. The code fragments below are from the solution to Problem 2 in the midterm exam the
fragments show several MIPS instructions under “Combine” and a new instruction under “Into.”
For each “Into” instruction show the closest equivalent PA-RISC instructions and show the coding
of the PA-RISC instruction. (See the references page for information on PA-RISC 2.0)

(The term offset used in the PA-RISC manual is equivalent to the term effective address used
in class, and is not to be confused with offset as used in this class. Assume that the s field and cc
fields in the PA-RISC format are zero.)

Show all the fields in the format, including their names and their values.

Combine:
lbu $t1, 0($t0)
addi $t0, $t0, 1
Into:
lbu.ai $t1, 0($t0)+ # Post increment load.
Combine:
sll $t1, $t1, 2
add $t3, $a1, $t1
lw $t4, 0($t3)
Into:
lw.si $t4, ($t3,$t1) # Scaled index addressing.

1

http://www.ece.lsu.edu/ee4720/

Problem 2: The code fragment below runs on the implementation illustrated below.
(a) Show a pipeline execution diagram for the code fragment on the implementation up to the
second fetch of the sub instruction; assume the branch will be taken.
(b) Show the value of the labeled wires (A, B, and C) at each cycle in which a value can be
determined.

For maximum pedagogical benefit please pay close attention to the following:

• As always, look for dependencies.

• Pay attention to the RAW hazard between sub and sw and the RAW hazard between andi
and bne.

• Make sure that add is fetched in the right time in the second iteration.

• Base timing on the implementation diagram, not on rules inferred from past solutions.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

CA

mux
alub

control

B

30 2
"0"

LOOP:

add r1, r2, r3

sub r3, r1, r4

sw r3, 0(r5)

andi r6, r3, 0x7

bne r6, $0, LOOP

addi r2, r2, 0x8

2

Problem 3: Consider the implementation from the previous problem, repeated below.
(a) There is a subtle reason why the implementation cannot execute a jr instruction. What is it?
Modify the hardware to correct the problem.
(b) There are two reasons why it cannot execute a jalr instruction, one given in the previous part
and a second reason. What is it? Modify the hardware to correct the problem.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

CA

mux
alub

control

B

30 2
"0"

3

