02-1 Components of CPU Performance and Performance Equation

02-2
Why is my computer fast (or slow)? CPU Performance Decomposed into Three Components:
Would it help to improve ——7 e Clock Frequency (¢)
Determined by technology and influenced by organization.
CPU performance equation is one way to start answering these questions.
e Clocks per Instruction (CPI)
Determined by ISA, microarchitecture, compiler, and program.
e Instruction Count (IC)
Determined by program, compiler, and ISA.
These combined to form CPU Performance Equation
1
tr = — x CPI x IC
¢
where t1 denotes the execution time.
02-1 BE 4720 1 Formatted 13:04 03 from Isli0 02-1 02-2 BE 4720 1 Formatted 13:04 03 1 0 02-2
02-3 02-3 02-4 Execution: Pipelined, In Order 02-4
CPU Performance: Simple System To Run Faster: Overlap Instructions (Pipelined Execution)
Execution in program order ... Result must be same as one-at-a-time execution . ..
-+ one at a time. ... not too difficult to achieve.
Time/cycles: 0 1 2 3 4 5 6 7 8 9 10 11 1,999,996 Timelcycless 0 1 2 3 4 5 6 7 8 9 10 11 750,000
Time/mms: 0 80 160 39,999,920 Time/mms: 0 20 40 3,750,000
Instr. 1 Instr. 2 Instr. 3 000 Instr. 500,000 ‘ nstr 4 ‘ ‘ st 5 ‘ o0
‘ Instr. 2 ‘ ‘ Instr. 6 ‘
‘ Instr. 3 ‘ ‘ Instr. 7 ‘
1C = 500, 000; ¢ = 50kHz; CPI = 4.
Execution time: IC x CPI. x clock period.
Here (and only here) CPI is number of cycles for each instruction. 750000
1C = 500, 000; ¢ = 200kHz; CPI = &m0 = 1.5
Execution time at best: IC x clock period ...
. assuming 1 cycle to start each instruction and ...
... instruction can start each cycle. (Slower in illustration.)
02-3 Bl ted 13:04 03 1 0 02-3 02-4 o '

02-5 Execution: Pipelined, Ideal Out of Order 02-5 02-6 Execution: Pipelined, Ideal Out of Order, Superscalar
To Run Even Faster: Overlap Instructions and Start Out of Order To Run Fastest!: Overlap, Out-of-Order, Start n per Tick (n-Way Superscalar)
Sometimes skip an instruction and execute it later. Requires about n times as much hardware. (Below, n = 2.)
Time/cycles: 0 1 2 3 4 5 6 7 8 9 10 11 500,000
Time/cycles: 0 1 2 3 4 5 6 7 8 9 10 11 250,000
Time/mms: 0 4 8 500,000 Time/mms: 0 .008 016 500
‘ Instr. 1 ‘ Instr. 5 ‘ Instr. 9 000 Instr. 500,000 ‘ Instr. 1 ‘ Instr. 9 ‘ Instr. 17 ooo| Instr. 500,000
‘ Instr. 3 ‘ Instr. 11 ‘
‘ Instr. 2 ‘ Instr. 6 ‘ ‘ Instr. 5 ‘ Instr. 13 ‘
‘ Instr. 7 ‘ Instr. 15 ‘
‘ Instr. 4 ‘ Instr. 8 ‘ ‘ Instr. 2 ‘ Instr. 10 ‘ Instr. 18 000
‘ Instr. 4 ‘ Instr. 12 ‘
‘ Instr. 3 ‘ Instr. 7 ‘ ‘ Instr. 6 ‘ Instr. 14 ‘
‘ Instr. 8 ‘ Instr. 16 ‘
1C = 500, 000; ¢ = 200kHz; CPI=1.
. . . 1C = ; = MHz; PI=1.
Execution time at best: IC X clock period ... C = 500, 000; ¢ =500) C 2
.. assuming 1 cycle to start each instruction
) g Y Execution time at best: %x 1C x clock period ...
.. instruction can start each cycle. . . N .
... assuming 1 cycle to start each instruction instruction can start each cycle.
! Using a conventional serial instruction set architecture.
02-5 EE 4720 Lecture Transparency. Formatted 13:04, 24 January 2003 from 1sli02 02-5 02-6 EE 4720 Lecture Transparency. Formatted 13:04, 24 January 2003 from Isli02 02-6
02-7 Execution: Pipelined, Out of Order, Superscalar 02-7 02-8 Component of CPU Performance: Instruction Count 02-8
Data from a real program, perl. CPIis 0.44. Given a program there are two ways instructions could be tallied:
Processor can start four instructions per cycle. Static Instruction Count:
. The number of instructions making up the program.
Colors show the steps in processing an instruction, yellow is execution.
Dynamic Instruction Count (IC):
Rank: 46/100 Pos. 50/100 First Instruction:S_regrepeat+284 . . .
2.29 IPC over 126 cycles. mov %0, %00 The number of instructions executed in a run of the program.
State: Commit
e— For estimating performance, dynamic instruction count is used.
—F—
Time 49,098,778 Tag 102,731,502 PC 0x00164d98 Grid 20 insn X 5 cyc
E 4720 Lecture Transparency. Formatted 13:04, 24 January 2003 from Islio2 02-7 02-8 EE 4720 Lecture Transparency. Formatted 13:04, 24 January 2003 from 15102 02-8

02-9 Instruction Counts 02-9 02-10 Component of CPU Performance: Clock Frequency 02-10
Example, assembler program that computes a = Z?:o i. CPUs implemented using synchronous clocked logic.
Written in Simplescalar assembler. Typical Clock Cycle
Ic e When clock switches from low to high work starts.
1 move r5, r0 ! r0 is always zero.
1 move r3, r0 e While clock is high work proceeds.
L23: ! Branch label.
10 addu r5, r5, r3 ! Add unsigned. e When clock goes from high to low work should be complete.
10 addu r3, r3, 1
10 slt r2, r3, 10 ! r2 = r3 < 10 . .
10 bne r2, 10, 123 | Branch to L23 if r2 not equal 0. Clock frequency determined by critical path.
Critical Path:
. . . Logic doing most time consuming work (in a cycle).
Static count: 6 (number of instructions). ’
Dynamic count: 42. If clock frequency is too high work will not be completed ...
... and so system will not perform properly.
For high clock frequencies, keep critical paths short.
02-9 BE 4720 1 Formatted 13:04 03 0 02-9 02-10 BE 4720 Lecture Transparency. Formatted 13:04, 24 January 2003 from Isli02 02-10
02-11 Component of CPU Performance: CPI 02-11 02-12 Review of CPU Performance Equation 02-12
Cycles (clocks) per Instruction (CPI) 1
tr = p x CPI x IC
Oversimplified definition: CPI:
Average number of cycles needed to execute an instruction. where ¢ denotes the execution time.
Better definition: CPI: e Clock Frequency (¢)
Number of cycles to execute some code divided by number of instructions. Determined by technology and influenced by organization.
e Clocks per Instruction (CPI
Difference: p) (]) . . .
Determined by organization and instruction mix.
Interested in rate at which instructions executed in program
e Instruction Count (IC)
. not time time for any one instruction. Determined by program and ISA.
02_11 EE 4720 Lectur ransparens rmatted 13:04, 24 Janu: 2003 from Isli02 02_11 02_12 EE 4720 Lectur ransparens rmatted 13:04, 24 Janu: 2003 from Isli02 02_12

02-14

02-13 Interaction of Execution Time Components 02-13 02-14 Example: Trading off Execution Time Components
Tradeoffs between Clock Frequency, CPI, and Instruction Count Company X is considering two clock frequencies for its next processor, 500 MHz or
400 MHz. A 500 MHz implementation would execute instructions at 1.7 CPI, the 400
. MHz part at 1.1 CPI. Which would be faster?.
Increasing Clock Frequency ...
... reduces the work that can be done in a clock cycle ... Find time to execute 1 instruction.
... and possibly limiting instruction overlap. 500 MHz execution time: 001 s X L7 x1=34ps
500 % : :
Reducing IC (by adding “powerful” instructions to ISA) ... 400 MHz execution time: m x 1.1 x1=2.75pus.
... may force implementors to increase CPI or lower clock frequency. The lower clock rate would nevertheless take less time.
Balancing these is an important skill in computer design. Perhaps because at 500 MHz too much work had to be split into multiple cycles.
Since the ISA is usually fixed, IC is less of a factor.
02-13 EE 4720 Lecture Transparency. Formatted 13:04, 24 January 2003 from Isli02 02-13 02-14 EE 4720 Lecture Transparency. Formatted 13:04 03 1 0 02-14
02-15 IC v. CPI Tradeoffs 02-15 02-16 IC v. CPI Tradeoffs, continued. 02-16
Assumption Case 1: Same ISA, different implementation.
IC is based on output of a good compiler. Newer implementation may have lower CPI on existing code ...
... but even better performance attainable by recompiling ...
Compiler is tuned for a particular implementation. ... which may increase CPI.
Two Cases Compiler writer selects instructions based on performance of implementation.
1. Same ISA, different implementation.
2. Different ISA, (and of course) different implementation.
02-15 02-16 Bl ted 13:04 03 1 0 02-16

02-15 EE 4720 Lecture Transparency. Formatted 13:04, 24 January 2003 from 15102

02-17 02-17 02-18 IC v. CPI Tradeoffs, continued. 02-18
Consider two implementations: Case 2: Different ISA, (and of course) different implementation.
Implementation A: add CPI 1 cycle, mul CPI 5 cycles. Major tradeoffs in complexity and speed.
Implementation B: add CPI 1 cycle, mul CPI 2 cycles. Consider two implementations:
! Call original value of rl, x. Code computes 6x. Implementation A: CPI: load, 2; add and store, 1.
! Code For Implementation A Implementation B: CPIL: add (doing load and store), 4.
add ri, ri, r1 ! rl1 = 2x
add r2, ri, r1 ! r2 = 4x ! Code for implementation A.
add rl, rl, r2 ! rl = 6x load ri1, [r2] ! Load rl with data at address in r2.
add r3, rl, r4 ! r3 =11 +r4d
! Code For Implementation B. store [r2], r3 | Store r3 at address in r2.
mul ril, rl1, 6 ! rl = 6x.
! Code for implementation B.
Implementation A: IC = 3, CPI = 1 (Computing CPI will be covered later.) add [r2], r4, [r2]
Implementation B: IC = 1, CPI = 2. Execution time same.
Implementation B is faster despite higher CPI. Implementation A: IC = 3, CPI = 4
: , 3
Code compiled for B will run slowly on A. Implementation B: IC = 1, CPI = 4.
02-17 EE 4720 Lecture Transparency. Formatted 13:04, 24 January 2003 from Isli02 02-17 02-18 EE 4720 Lecture Transparency. Formatted 13:04, 24 January 2003 from 1sli02 02-18
02-19 Technological Change 02-19 02-20 02-20
Golden Handcuffs: Technological Change and Computer Designer
The need to maintain compatibility in a successful product line. Technology determines “raw materials” for designer
Famously, Intel’s IA-32. (Popularly referred to as 80x86.) Raw material: number of gates and their speed.
The ISA is the handcuffs... ISA lifetime can be decades.
. and technological change brings the desire to move your arms.
Raw materials greatly change over this time.
So, design ISA for now and future.
02-19 02-20 BE 4720 Lecture Transparency. Formatted 13:04, 24 January 2003 from Isli02 02-20

02-19 EE 4720 Lecture Transparenc rmatted 13:04, 24 January 2003 from Isli02

02-21 02-21 02-22 Benchmarks 02-22
How technological advancement affects processor. Benchmark:
Logic Speed, Clock Rate Program used to evaluate performance.
No changes to organization or ISA.
Uses
Number of Transistors Available for Logic
Changes to organization and possible changes to ISA. e Guide computer design.
e Guide purchasing decisions.
Memory Size
Change ISA to use larger address space. e Marketing tool.
Can use ISA having larger instruction codings.
Guiding Computer Design
Memory Speed Compared to Processor Speed
Include more sophisticated caching in organization. Measure overall performance.
Determine characteristics of programs.
E.g., frequency of floating-point operations.
Determine effect of design options.
02-21 EE 4720 Lecture Transparency. Formatted 13:04, 24 January 2003 from Isi02 02-21 02-22 EE 4720 Lecture Transparency. Formatted 13:04, 24 January 2003 from Isi02 02-22
02-23 Choosing Benchmark Programs 02-23 02-24 02-24
Important: Choice of programs for evaluation. Options:
Real Programs:
Optimal but unrealistic: Programs chosen using surveys, for example.
The exact set of programs customer will run. + Measured performance improvements apply to customer.
Problem: computers used for different applications Large programs hard to run on simulator. (Before system built.)
Kernels:
Therefore, must model typical users’ workload Use part of program responsible for most execution time.
, .
+ Easier to study.
Not all program have small kernels.
Toy Benchmarks:
Program performs simplified version of common task.
+ Easier to study.
May not be realistic.
02-23 EE 4720 Lecture Transparency. Formatied 13:04, 24 January 2003 from 102 02-23 02-24 EE 4720 Lecture Transparency. Formatied 13:04, 24 January 2003 from 1102 02-24

02-25 02-25 02-26 Benchmark Suites 02-26
Synthetic Benchmarks: Benchmark Suite:
Program “looks like” typical program, but does nothing useful. A named set of programs used to evaluate a system.
+ Easier to study. Typically:
— May not be realistic.
e Developed and managed by a publication or non-profit organization.
E.g., Standard Performance Evaluation Corp., PC Magazine.
Commonly Used Option e Tests clearly delineated aspects of system.
Overall performance: real programs E.g., CPU, graphics, I/0, application.
Test specific features: synthetic benchmarks. e Specifies a set of programs and inputs for those programs.
e Specifies reporting requirements for results.
02-25 ER I Formatted 13:04 03 1 0 02-25 02-26 EE 4720 Lecture Transparency. Formatted 13:04, 24 January 2003 from 1sli02 02-26
02-27 02-27 02-28 02-28
What Suites Might Measure Example, SPEC CPU2000 Suites
e Application Performance Respected measure of CPU performance.
E.g., productivity (office) applications, database programs.))
. Managed by Standard Performance Evaluation Corporation,. . .
Usually tests entire system. L .
...a non-profit organization funded by computer companies.
e CPU and Memory Performance .
Measures CPU and memory performance on integer and FP code.
Ignores effect of I/0.
. Uses common Unix programs such as perl, gcc, gzip.
e Graphics Performance
Requires that results on each program be reported.
Programs compiled with publicly available compilers and libraries.
Programs compiled with and without expert tuning.
02-27 Bl ted 13:04 03 1 0 02-27 02-28 BE 4720 Lecture Transparency. Formatted 13:04, 24 January 2003 from Isli02 02-28

02-29
SPEC CPU2000 Suites and Measures

Suite of integer programs run to determine:

e SPECint2000, execution time of tuned code.

e SPECint_base2000, execution time of untuned code.
e SPECint_rate2000, throughput of tuned code.

e SPECint_rate_base2000, throughput of untuned code.
Suite of floating programs run to determine:

e SPEC{p2000, execution time of tuned code.

e SPECfp_base2000, execution time of untuned code.
e SPECfp_rate2000, throughput of tuned code.

e SPECfp_rate_rate2000, throughput of untuned code.

02-29 BE 4720 Lecture Transparency. Formatted 13:04, 24 January 2003 from Isi02

02-29

02-29

02-30

Other Examples

02-30

(Fall 2001: This list is out of date.)
BAPCO Suites, measure productivity app. performance on Windows 95.
TPC, measure “transaction processing” system performance.

WinMARK, graphics performance.

02-30

02-30

