
LSU EE 4720 Homework 2 Solution Due: 7 March 2003

Design a stack ISA with the following characteristics:

• Memory has a 64-bit address space and consists of 8-bit characters.

• The stack consists of 64-bit registers.

• The ISA uses 2’s complement signed integers.

• Only add other data types as necessary.

The stack ISA must realize these goals:

• Small program size.

• Low energy consumption. (For here, assume energy consumption is proportional to dynamic
instruction count.)

• Relatively simple implementation. Instructions should be no more complex than RISC in-
structions.

Design the instruction set based on the sample programs in the problems below and the
following:

Arithmetic and Logical Instructions

They should read their source operands from the top of stack (top one or two items) and push
their result on the top of stack. Arithmetic instructions cannot read memory and they cannot read
beyond the top two stack elements. (That is, you can’t add an element five registers down to one
ten registers down. Instead use rearrangement instructions before the add.) Specify whether the
arithmetic and logical instructions pop their source operands. One can have both versions of an
instruction. For example, add might pop its two source operands off the stack while addkeep might
leave the two operands:

# Stack: 26 3 2003
add
# Stack: 29 2003
addkeep
# Stack: 2032 29 2003

Remember that arithmetic and logical instructions cannot rearrange the stack and cannot
access memory.

Immediates

Decide how immediates will be handled. There can be immediate versions of arithmetic in-
structions or one can have push immediate instructions. See the example below. Keep in mind
that the register size is 64 bits.
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# Stack: 123
addi 3 # An immediate add.
# Stack: 126
pushi 3
# Stack: 3 126
add
# Stack: 129

Load and Store Instructions
Memory is read only by load instructions which push the loaded item on the stack. Memory is

written only by store instructions which get the data to store from the top of the stack. Determine
which addressing modes are needed for loads and stores, and design instructions with those modes.

Stack Rearrangement Instructions
The stack rearrangement instructions change the order of items on the stack. Consider adding

the following: exch, swaps the top two stack elements. roll n j, remove the top j stack elements
and insert them starting after what was the nth stack element. (See the example.) Other stack
rearrangement instructions are possible.

# stack 11 22 33 44 55 66
exch
# stack 22 11 33 44 55 66
roll 5 2
# stack 33 44 55 22 11 66

Control Transfer Instructions
Your ISA must have instructions to perform conditional branches, unconditional jumps, indi-

rect jumps, and procedure calls. It must be possible to jump or make a procedure call to anywhere
in the address space. (The only thing special the instruction used for a procedure call has to do
is save a return address.) The branch instructions can (but do not have to) use a condition code
register. No other registers can be used (other than those in the stack). Don’t forget about the
target address.

Problem 1: As specified below, describe your ISA and the design decisions used. (Don’t com-
pletely solve this part until you have solved the other problems.)
(a) For each instruction used to solve the problems below or requested above, show the assembler
syntax and the instruction’s coding. The coding should show the opcode, immediate, and any
other fields that are present. Don’t forget the design goals. Also don’t forget about control transfer
targets.

There is no need to list a complete set of instructions, but for coding purposes assume their
existence. (There must be a way of coding a complete set of instructions that realize the goals of
this stack ISA.)

The solution to this part appears after the last problem.

(b) Determine the size of the stack. Specify instruction coding and implementation issues used to
determine the size.

Stack size was set to 32 elements. The solution to Problem 3 used six stack elements (at most), if fewer were
available additional instructions would be needed to move items from and to memory. Too many stack elements, say



thousands, would be difficult to implement and a nightmare to program (or would go unused). Additional variations of
the index and roll instructions would be needed to handle thousands of registers since one byte could not reference
them all. A stack size of 32 was chosen to match the number of general purpose registers in RISC ISAs.

(c) Explain your decision on whether there are immediate versions of arithmetic instructions. (The
alternative is instructions like pushi.)

A design goal was to include one-byte immediate arithmetic and other instructions. To do this only a few instructions
could use immediates. This was limited to only a few arithmetic and logical instructions, the others could only get operands
from the stack.

(d) Explain your selection of memory addressing modes. Also, pick an addressing mode that you
did not use and explain why not.

The variable instruction size made it easy to include direct addressing (instruction holds entire memory address).
Displacement addressing was included because it is so commonly used but the offset was limited to one byte to save
opcodes. (RISC ISAs need larger offsets since they lack a direct addressing mode and so the offset is used as the second
half of an address, the first being loaded into a register with an instruction like lui.) Indirect addressing was included to
keep code size down. (That is, a load.o.word 0 loads the same address as loadr.sw but it uses two bytes instead
of one.)

Memory indirect, and postincrement addressing would have helped in reducing code size, they were not included
since instructions could not exceed RISC-like complexity.

(e) Explain how other design decisions you have made help realize the goals of small program size,
low energy, or simple implementation.

The five-bit-opcode, three-bit-operand format allowed many instructions to be coded in one byte, reducing program
size. The use of a single 3-bit immediate field for many instructions simplifies implementation.

(f) Describe any design decision you made that involved a tradeoff between code size, energy, or
implementation simplicity. (Pick any pair.) The original question asked only about code size and
energy. If you didn’t make such a decision make one up.

The ISA described above does not involve energy and code size tradeoffs, so here’s a made-up decision. In ISA A
every instruction has a one-byte opcode and any immediates must start in the second byte of an instruction. In ISA B
there is a five-bit opcode and a three-bit immediate. With the exception of a push the three-bit immediate is the only
kind of immediate an instruction can use (unlike the ISA described elsewhere in this homework). The push uses as many
bytes as it needs for the immediate. Suppose 20% of dynamic instructions in ISA A could use the 3-bit immediate (if it
were available), 10% require a one-byte immediate, and the remainder don’t use immediates. The dynamic instruction
count for ISA B would be 10% longer because of the added push instructions. On the other hand while those extra 10%
instructions are two bytes each, the 20% of instructions that use a 3-bit immediate are 1 byte in ISA B but are two bytes
in ISA A. Assuming the dynamic count is a reasonable predictor of the static code size, ISA B has smaller code size.

Problem 2: Re-write the following MIPS code in your stack ISA.

lui $a0, %hi(array) # High 16 bits of symbol array.
ori $a0, $a0, %lo(array) # Low 16 bits of symbol array.
jal lookup # The name of a routine.
nop

# Push handle large immediates no need to use two instructions.
push.v array
jl lookup

Problem 3: Re-write the solution to Homework 1 in your stack ISA, use the template below. (Use
your own solution or the one posted.)



lookup:
# Call Arguments (TOS is the top of the stack.)
#
# TOS: Return address
# TOS + 1: ADDR of first element of array. Array holds 64-bit integers.
# TOS + 2: Number of elements in array.
# TOS + 3: TARGET, element to count.
#
# Return Value
#
# TOS: Number of times TARGET appears in the array starting at ADDR.

# Solution Here
#
# [ ] Don’t forget the return.

# Solution

# ra ptr size target
push.0
# count ra ptr size target
rolls 2 5
# ptr size target count ra
rollu.3
# size target ptr count ra
sll.3
index.2
# ptr sizex8 target ptr count ra
add
# end target ptr count ra
rolld.3
# ptr end target count ra
cmpk.eq
b.1 DONE

LOOP:
# ptr end target count ra
index.0
loadr.sw
# data ptr end target count ra
index.3
# target data ptr end target count ra
cmp.eq
# target=data ptr end target count ra
rolld.5
# count target=data ptr end target ra
add
# count ptr end target ra
rollu.4



# ptr end target count ra
addpower.3
cmpk.eq
b.1 LOOP

# ptr end target count ra
pop pop pop
# count ra
rollu.2
# ra count
j



Comments on Solutions
Most solutions to this assignment included substantially correct programs, however several

common mistakes or less-than-optimal choices were made in the stack ISAs. The following are
common mistakes:

Lack of one-byte instructions. Since program size is a goal frequently used instructions should
take one byte, whenever possible. Some solutions omitted any one-byte instructions, increasing
code size.

Lack of immediate arithmetic instructions. A design goal was to reduce program size, including
the ones in the assignment. If there are no immediate arithmetic or logical instructions then
whenever an immediate is needed a push instruction must also be included, adding to program
size. A justification given in some solutions for omitting immediate arithmetic instructions is a
reduction in complexity or instruction count. Though these would be reduced, it would be at the
expense of code size and energy, two other design goals.

Lack of one-byte immediates. Many solutions had ISAs with a single immediate size, some-
times very large. Since the goal is small program size and since many instructions can use small
immediates, there should be some instructions using one-byte immediates. Other instructions could
use larger immediates. (There is no reason why there should be a single immediate size.)

Lack of a 64-bit immediate. Since the register size is 64-bits there should be an instruction
that can load a 64-bit constant, for example, pushi 0xfedcba9876543210.

Inclusion of lui-like instructions. Many solutions included instructions similar to MIPS load-
upper immediate. Such instructions make sense in RISC ISAs because with their fixed instruction
size there is no way to load a 32-bit constant (or whatever the instruction size is) or larger with one
instruction. An lui paired with an or or some other instruction can load a 32-bit constant. With
variable size instructions one can simply have a pushi (or other instruction) that uses a 64-bit
immediate, there is no need for anything like lui.

Inclusion of delayed branches. Delayed branches make sense only in certain pipelined imple-
mentations. (Such as those discussed in class so far.) On other implementations delayed branches
add to complexity without adding much to performance. (This was mentioned in class several
times.) For that reason, delayed branches should have been omitted or their inclusion should have
been justified.



Solution to Problem 1a
A feature of stack ISAs and a design goal in this problem is small program size. Small pro-

gram size is realized by choosing instructions that minimize static instruction count and by coding
instructions so they are as small as practical.

Instruction Choice
The choice of instructions was based on those needed for the solution to the last problem in

this assignment (for example, add and branch instructions). Other commonly needed instructions
were added (for example, xor and store).

Though powerful instructions (for example, those that perform multiple operations such as shift
and add) would help reduce the static instruction count they were not added because the problem
restricted the ISA to instructions that are no more complex than typical RISC instructions.

Data Types
The ISA uses 64-bit signed and unsigned integers. The memory is byte-addressed and items

are in big-endian byte order.

Instruction Coding Overview
To minimize program size the coding was chosen so that as many instructions as possible were

only one byte. The Problem 3 solution had several arithmetic and other instructions that used
immediate operands. To squeeze them down to one byte the coding was based on a five-bit opcode
and a three-bit extension field. The extension field holds an immediate or other constant data, or
can be used for an extension of the opcode field (as is the function field in MIPS).

Instructions that use the extension field for anything other than an opcode (such as an immedi-
ate) are called Type 1, the rest are called Type 2. Let i1 denote the number of Type-1 instructions.
Clearly i1 ≤ 32 and the number of possible Type-2 instructions is 8(32 − i1).

The maximum number of Type 1 instructions is small and so only those instructions which
occurred frequently and needed a small (or other) immediate were given Type 1 codings. The other
instructions either did not use immediates or had immediates in following bytes.

The size of the extension field was a tradeoff between the number of possible Type 1 instructions
and the usefulness of the immediate. (That is, with a 1-bit immediate there could be as many as
128 Type 1 instructions but there would be few cases where the 1-bit immediate would be useful.)

An example of a Type 1 instruction is add.i:

add.4 # Add 4 to the element at the top of stack.
# Coding of add.4
Field Name: | opcode | ext |
Field Value: | 0 | 100 |
Bit Number: 7 6 5 4 3 2 1 0

The extension field can hold data other than an immediate. The subtype of an instruction
specifies what kind of data the immediate field holds. An add.i is subtype i. The table below
shows the subtypes, the subtypes are explained in detail further below. In the table EX refers to
the entire extension field (all 3 bits), EX10 refers to bits 1 and 0 and EX2 refers to bit 2.

1i Use EX as immediate. Whether it’s sign extended depends on the instruction.
1v Immediate in following bytes. EX gives immediate size and padding.
1s Size and padding of data item loaded or stored from memory.
1c Comparison. EX specifies type of comparison.
1t How jump target is determined.
1b Branch condition and size of displacement.



1o Use EX for additional opcode bits. (Type 2 instruction.)

The assembly language syntax for Type 1 instructions consists of the mnemonic (such as
add) followed by a dot and the extension field value, if known, otherwise the subtype name. For
example, add.3 means add the immediate 3 to the TOS while add.i refers to a Type 1i add
instruction without specifying what the immediate is (as one does when describing the syntax).

Instructions
A complete list of instructions appears below, starting with Type 1 instructions.

Opcode 1 push.i Push immediate on TOS.

Opcode 2 push.v IMM Push immediate on TOS.
Instruction push.i pushes value in extension field, i, on the stack. Instruction push.v pushes

IMM on the stack. IMM is computed using the next 0 to 8 bytes based on the EXT field value as
specified in the table below:

Type 1v -- Immediate follows first byte of instruction.
EX: Sz: Description
0: 2: IMM is one byte, no sign extension.
1: 3: IMM is two bytes, no sign extension.
2: 5: IMM is four bytes, no sign extension.
3: 9: IMM is eight bytes.
4: 2: IMM is one byte, sign extend.
5: 3: IMM is two bytes, sign extend.
6: 5: IMM is four bytes, sign extend.
7: 1: For push, use 0 as value; for others use TOS + 1.

EX is value of extension field.
Sz is total instruction size.

Execution Examples:
# 111 222 333 444 555 666
push.7 # Type 1i
# 7 111 222 333 444 555 666
push 0x11 # Type 1v, EX = 0 (one byte immediate, don’t sign extend)
# 0x1 7 111 222 333 444 555 666
push -10 # Type 1v, EX = 4 (one byte immediate, sign extend)
# -10 0x1 7 111 222 333 444 555 666
push 0x123 # Type 1v, EX = 1 (two byte immediate, don’t sign extend)
# 0x123 -10 0x1 7 111 222 333 444 555 666
push 0x123456789 # Type 1v, EX = 3 (Eight byte immediate. )
# 0x123456789 0x123 -10 0x1 7 111 222 333 444 555 666

Coding Examples:

push.7 # Type 1i
# Coding of instruction above.
First Byte
| opcode | ext |
| 00001 | 111 |

76543 210



push 0x123 # Type 1v, EX = 1 (two byte immediate, don’t sign extend)
# Coding of instruction above.
First Byte Second and Third Byte
| opcode | ext | | IMM |
| 00010 | 001 | | 0x123 |

00000 000 1111100000000000
76543 210 5432109876543210

Opcode 3 rollu.i Roll up by 1, width i.
Pop the TOS and insert it so that it becomes the i’th element.

Example:
# 111 222 333 444 555 666
rollu.3
# 222 333 111 444 555 666

Coding Example:

rollu.3 # Type 1i
# Coding of instruction above.
First Byte
| opcode | ext |
| 00011 | 011 |

76543 210

Opcode 4 rolld.i Roll down by 1, width i.
Remove the i’th element and push it on the TOS.

Opcode 5 index.i Push a copy of element i (the (i + 1)’th element).

Example:
# 111 222 333 444 555 666
index.0
# 111 111 222 333 444 555 666
index.4
# 444 111 111 222 333 444 555 666

Coding Example:

index.4 # Type 1i
# Coding of instruction above.
First Byte
| opcode | ext |
| 00101 | 100 |

76543 210

Opcode 0 add.i Remove the TOS add it to i push the result.
Opcode 6 add.v IMM Remove the TOS add it to IMM push the result.



See the Type 1v table above for sizes and padding of IMM.

Coding Examples

add.0 # Type 1i
# Coding of instruction above.
First Byte
| opcode | ext |
| 00000 | 000 |

76543 210

add.v 0x12345678 # Type 1v
# Coding of instruction above.
First Byte Following four bytes.
| opcode | ext | | IMM |
| 00110 | 011 | | 0x12345678 |

00000 000 33222222222211111111110000000000
76543 210 10987654321098765432109876543210

Opcode 7 addpower.i Remove the TOS add 2i to it and push the result.

Opcode 8 sub.i Remove the TOS subtract i from it and push the result.
A sub.v is not included because it would not be used often enough to justify a Type-1 coding.

Opcode 9 sll.i Shift left logical.
Opcode 10 srl.i Shift right logical.
Opcode 11 sra.i Shift right arithmetic.

Remove the TOS, perform the shift by i + 1 bits and push the result. The assembly language
syntax shows the shift amount while the EX field will be coded with the shift amount plus 1. For
example, sll.1 shifts left by one bit and the EX field holds a zero. There is a shift instruction
for shifts beyond 9 bits.

Opcode 12 b.b DISP Branch if TOS non-zero b=1 or if TOS zero (b=0).
A displacement is found in the following 2ex10 bytes, the next instruction is the PC plus the

displacement.

Examples:

b.1 TARGET # Branch if TOS non-zero. TARGET is 20 bytes ahead.
# Coding of instruction above.
First Byte Second Byte
| opcode | ext | | DISP |
| 01100 | 100 | | 10100 |

00000 000 00000000
76543 210 76543210

b.0 TARGET2 # Branch if TOS zero. TARGET2 is 0x1234 bytes ahead
# Coding of instruction above.
First Byte Second and Third Byte
| opcode | ext | | DISP |



| 01100 | 101 | | 0x1234 |
00000 000 1111100000000000
76543 210 5432109876543210

Opcode 13 j.t DISPorTARGET Jump.
Opcode 14 jal.t DISPorTARGET Jump and link.

In both instructions the extension field specifies how to find target address, see the table below.
The jal.t instructions push a return address on the stack.

Type 1t -- Jump Targets
EX: As: Sz: Description
0: ds: 2 : Displacement target, DISPorTARGET is one byte signed.
1: ds: 3 : Displacement target, DISPorTARGET is two bytes signed.
2: ds: 5 : Displacement target, DISPorTARGET is four bytes signed.
3: ds: 9 : Displacement target, DISPorTARGET is eight bytes signed.
4: in: 1 : Target is register indirect, address on TOS.
5: ix: 1 : Target is indexed, sum of top two stack elements.
6: 1 : Illegal, reserved for future extension.
7: di: 9 : Direct target, DISPorTARGET is eight bytes unsigned.

EX is value of extension field.
As is assembly language characters for corresponding value.
Sz is the total instruction size, including the first byte.

Opcode 15 cmp.c Compare.
Opcode 16 cmpk.c Compare and keep.
Opcode 17 cmpz.c Compare with zero.
Opcode 18 cmpzk.c Compare with zero and keep.

Instructions cmp.c and cmpk.c compare the top two elements using the comparison specified
by c (see the table below). Instruction cmp.c removes the top two elements cmpk.c does not.
Instructions cmpz.c and cmpkz.c are similar except that they compare the TOP element to zero.
All instructions push the result of the comparison (zero or one) on the stack.

Type 1c -- Conditions. a is TOS, b is 0 or TOS+1
EX: As: Description
0: eq: a = b
1: ne: a != b
2: lt: a<b
3: le: a<=b
4: gt: a>b
5: ge: a>=b
6: ov: overflow
7: ca: carry

Note: All instructions are 1 byte.

Opcode 19 loadd.s IMM64 Load direct.
Opcode 20 stored.s IMM64 Store direct.



Load or store from memory using address IMM64 (the immediate found in the following 8
bytes). The size and padding of the element to load is specified by s. (See the table below.)

Opcode 21 loado.s OFF8 Load offset.
Opcode 22 storeo.s OFF8 Store offset.

Load or store using the TOS + OFF8 as the address. The size and padding of the element to
load is specified by s. (See the table below.)

Opcode 23 loadr.s Load register-indirect.
Opcode 24 storer.s Store register-indirect.

Load or store using the TOS as the address. The size and padding of the element to load is
specified by s. (See the table below.)

Type 1s -- Memory access size and padding.
EX: As:
0: ub: One byte, unsigned.
1: uq: Two bytes (quarter word), unsigned.
2: uh: Four bytes (half word), unsigned.
3: uw: Eight bytes (word).
4: sb: One byte, signed. Illegal for stores.
5: sq: Two bytes, signed. Illegal for stores.
6: sh: Four bytes, signed. Illegal for stores.
7: : Illegal, reserved for future expansion.

Sizes: 9 bytes: loadd.s and stored.s
2 bytes: loado.s and storeo.s
1 byte : loadr.s and storer.s

Examples:
# Stack: 0x1234 111 222
index.i
# Stack: 0x1234 0x1234 111 222
loadr.uw
# Stack 543210 0x1234 111 222 # 543210 is contents at memory 0x1234.
rollu.2
# Stack 0x1234 543210 111 222
loado.uw 0x10
# Stack 540000 543210 111 222 # 540000 is contents at memory 0x1244.

Coding Examples:
loadr.uw
# Coding of instruction above.
First Byte
| opcode | ext |
| 10111 | 011 |

00000 000
76543 210

loado.uw 0x10
# Coding of instruction above.



First Byte Second Byte
| opcode | ext | | OFF |
| 10011 | 100 | | 0x10 |

00000 000 00000000
76543 210 76543210

Type 2 Instructions
There are 24 Type 1 instructions, leaving space for 8(32 − 24) = 64 Type 2 instructions.
The Type 2 instructions use the extension field as part of the opcode. Some Type 2 instructions

have immediates, and some do not.

Opcode 30, Ext 0 pop Pop the stack.

Coding Example:
pop
# Coding of instruction above.
First Byte
| opcode | ext |
| 11110 | 000 |

00000 000
76543 210

Opcode 30, Ext 1 rolls SHIFT3 SIZE5 Roll small amount.
Opcode 30, Ext 2 roll SHIFT8 SIZE8 Roll.

Rearrange the stack. Instruction rolls is two bytes but cannot perform all rolls (on a 32-
element stack) whereas roll can perform any roll. A size exceeding 32 or a shift exceeding ±32 is
illegal.

Note that the two immediates used by rolls fit in one byte.

Coding Examples:
rolls 2 19
# Coding of instruction above.
First Byte Second Byte
| opcode | ext | | SHIFT3 SIZE5 |
| 11110 | 001 | | 010 10011 |

00000 000 000 00000
76543 210 765 43210

Opcode 30, Ext 3 index DEPTH8 Push a copy of the stack entry at DEPTH8.

Opcode 30, Ext 4 sllv Shift left logical variable.
Opcode 30, Ext 5 srlv Shift left logical variable.
Opcode 30, Ext 6 srav Shift left logical variable.

The TOS is shift by the amount specified in the low six bits of TOS+1. TOS+1 is removed.

Opcode 30, Ext 7 shift PAD1 DIR1 AMT6 Shift. (Combined shift left, right.)
If PAD1 is 1 shift is arithmetic. If DIR1 is 1 shift is left otherwise it is right. AMT6 is the

number of bits to shift. Note that the immediates fit in oe byte.

Opcode 29, Ext x sub, mul, div Arithmetic operations.



Opcode 29, Ext x and, or, xor Logical operations.
The indicated operation is performed on TOS and TOS+1.

Opcode 31, Ext x illegal Reserved for future second-byte opcode exten-
sion.


