
Name Solution

Computer Architecture

EE 4720

Final Examination

14 May 2003, 15:00–17:00 CDT

Alias The Next Spam

Problem 1 (20 pts)

Problem 2 (15 pts)

Problem 3 (15 pts)

Problem 4 (20 pts)

Problem 5 (30 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: The execution of a MIPS code fragment on a dynamically scheduled machine is shown in the
tables and in the labels on the diagram, both on the next page. The tables show the contents of the ID
Register Map, Commit Register Map, and the Physical Register File at each cycle. The diagram shows the
values on certain wires at certain cycles. For example, 4:65 means that at cycle 4 the labeled wire holds
value 65.

The following are functional unit segment labels: Load/store, L1 L2; floating-point add, A1 A2 A3 A4;
floating-point multiply, M1 M2 M3 M4 M5 M6; integer, EX. The register maps handle both integer and
floating-point registers.

(a) Write a program consistent with these tables and labels.(12 pts)©Show a pipeline execution diagram, be sure to show where each instruction commits.©Choose consistent instructions.©Choose consistent registers. If a register number cannot be determined, use a question mark.

(b) Complete the tables on the next page as follows:(8 pts)©Show where registers are added to, “]”, and removed from, “[”, the free list.©Show the values on the line marked X in the illustration.

Solution is on the next page. Here is how the problem is solved:

Entries in the ID map are used to determine the destination registers (of the instruction in ID at that cycle) and when a physical
register is removed from the free list.

Entries in the commit map are used to determine when an instruction commits. When an instruction commits the incumbent register
(the same architected destination register used by an earlier instruction) is put back in the free list. The incumbent register is to
the left of the committing register in the commit map table. (For example, at cycle 11 the instruction writing physical register 93
commits, the incumbent is 50 [and both are f12]). The incumbents are shown in the “X” row of the table, these physical registers
are put back in the free list.

The big label in the diagram (“2:50, 3:65, etc.”) shows when instructions are removed from the instruction queue to start execution.
Qs are put in the pipeline execution diagram for this.

Entries in the physical register file table show when instructions write back. The time between Q and WB is spent in an execution
unit, the amount of time (say four cycles) determines the type of unit and the type of instruction.

The three small labels in the diagram provide information about source registers, two are in ID, one is in Q.

The completed tables are on the next page.

2

Problem 1, continued: See previous page for instructions.

25:21

20:16

rsPR

dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

P
C

dst
S

t: C
,X

0,0

ROB #

C,X
Addr

D In

R
eo

rd
er

 B
uf

fe
r

dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ROB #
tail

head

IDIF

rtPR

F
re

e
Li

st

dstP
R

dstP
R

dstPR

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

EX

dstPR

dstVal.

Decode
dest. reg

incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

dst

incmb
dstPR

Addr

D In

C Reg. Map

Data

incmb

dstPR

R
ec

ov
er

Q

2:50, 3:65, 5:20,
6:93,10:59

10:93

3:12

4:65

X

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
X (Solution) 7 3 50 10 93
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Solution
add.s f12, f??, f?? IF ID Q A1 A2 A3 A4 WC
or r5, r?, r? IF ID Q EX WB C
add.s f12, f12, f?? IF ID Q A1 A2 A3 A4 WC
LwC1 f10, 0(r5) IF ID Q L1 L2 WB C
add.s f12, f??, f12 IF ID Q A1 A2 A3 A4 WC

ID Map Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f12 7 50 93 59
r5 3 65
f10 10 20
Commit Map Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f12 7 50 93 59
r5 3 65
f10 10 20

Phys. Reg. File Cy 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Solution
3 0]
7 0.]
10 0.]
20 [0.
50 [0.]
59 [0.
65 [100
93 [0.]
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3

Problem 2: The diagram below shows the branch outcome patterns for a branch. (15 pts)
BIGLOOP:

B1: 0x1000 beq $t1, $t2, SKIP1 N N N T T N N N T T N N N T T
...
B2: 0x1020 beq $v0, $v1, SKIP2
...

0x2010 j BIGLOOP©How accurately would branch B1 be predicted by a bimodal (one-level) branch predictor with a 214-entry
branch history table?

For the version using a 2-bit counter the accuracy is 2
5 = 40%. See the diagram below.

Counter: 0 0 0 0 1 2 1 0 0 1 2 1 0 0 1
B1: N N N T T N N N T T N N N T T
Predict: N N N N N T N N N N T N N N N
Correct: Y Y Y N N N Y Y N N N Y Y N

Repeating pattern has two correct, three wrong predictions.

©How accurately would branch B1 be predicted by a local history predictor with a 10-bit local history and a
214-entry branch history table?

The repeating pattern can easily be handled by a 10-bit local history so the accuracy is 100%.

©What is the minimum local history size needed to predict B1 with 100% accuracy (after warmup). No partial
credit without an explanation.

Three outcomes. Just 3. See the table of patterns (NNN, etc.) and predictions.

Pat Pred
NNN T
NNT T
NTT N
TTN N
TNN N

©Find a pattern for branch B2 that will reduce the accuracy of the local predictor on branch B1. The branch
history table (not to be confused with the pattern history table) remains 214 entries and the history length
remains 10 bits.

The pattern below has and extra “T” at the end. So the pattern history table entry for NNNTTNNNTT would be used by both
branches, B1 would decrement the entry and B2 would increment it.

B2: N N N T T N N N T T T N N N T T N N N T T T

4

Problem 3: Answer the following load/store unit questions.

(a) Why don’t store instructions write to the cache until they commit? (5 pts)

There’s a chance they will be squashed, if they wrote to the cache there would be no way (ordinarily) to recover the data that was
overwritten.

5

For the two problems below consider the four instructions (repeated) which are in the reorder buffer of a
dynamically scheduled 1-way system. On a cache miss data will arrive in four cycles or more. The effective
address for the second load is 0x1000. (10 pts)

(b) Describe a scenario in which the data for address 0x1000 is not cached but the second load does not wait
for its data more than a few cycles.©Show a pipeline execution diagram.©Explain the involvement of the load/store queue and why the second load does not wait more than a cycle
or two.

The effective address of the second load (0x1000) is the same as that of the store and so the second load gets its data from the
store value (there is no need to check the cache and it doesn’t matter that the data is not there). For this to happen the store address
must not be delayed (see the next part) which means the first load must hit the cache.

Involvement of the load/store queue: At cycle 7 the LSQ processes the second load. It scans “upward” (toward the head where the
older instructions are) looking at each store instruction. The first entry it finds is the store instruction, since the addresses match
and the store data is ready the load data will be taken from the store data.

Cycle 0 1 2 3 4 5 6 7 8
First: lw $t1, 0($t2) IF ID Q L1 L2 WB

addi $t0, $0, 4720 IF ID Q EX WB

sw 0($t1), $t0 IF ID Q L1 L2 WB

Second: lw $t3, 0($t4) IF ID Q L1 L2 WB

(c) Describe a scenario in which the data for address 0x1000 is cached but the second load waits for its data
at least four cycles.©Show a pipeline execution diagram.©Explain the involvement of the load/store queue and why the second load waits.

In this scenario the first load misses the cache and so the store cannot determine its effective address until cycle 10. Since the store
address is unknown the second load cannot safely check the cache (because the store address might match the second load address).
At cycle 11 the load can finally be processed. The timing below is correct for a store address of 0x1000 or some other address,
either way the load waits until cycle 11 at which time it gets its data.

Involvement of load/store queue: The load store queue processes the second load at each cycle from 7 to 11. At cycles 7 to 10 it
finds the store with an unresolved address and so the load cannot be completed. Finally at cycle 11 the store address is available. If
it matches the second load address the store data is bypassed to the load, otherwise the cache is checked.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
First: lw $t1, 0($t2) IF ID Q L1 L2 L2 WB

addi $t0, $0, 4720 IF ID Q EX WB

sw 0($t1), $t0 IF ID Q L1 L2 WB

Second: lw $t3, 0($t4) IF ID Q L1 L2 WB

6

Problem 4: The diagram below is for a 2-MiB (221 bytes) cache on a system with 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants. (7 pts)©Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32

:8

:3

:8

:3

Fill in

Number of
bits

64

31:20

19

19

31:20

19

19

©Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 20

Index

19 8

Offset

7 3 2 0

©Associativity: 2

©Memory Needed to Implement (Indicate Unit!):

It’s the cache capacity plus 2 × 220−8(32 − 20 + 1) bits.

©Show the bit categorization for a four-way set-associative cache with the same capacity and line size.

Address:

Tag

31 19

Index

18 8

Offset

7 3 2 0

7

Problem 4, continued:

(b) The code below runs on the cache from the previous part. When the code below starts running the cache
is empty. Consider only accesses to the array. (7 pts)

char *a = 0x1000000; // sizeof(char) = 1 character
int sum, i, j;
int ILIMIT = 1024;

for(j=0; j<2; j++)
for(i=0; i<ILIMIT; i++)
sum += a[i * 2];

©What is the hit ratio for the program above?

The element size is one character but the code accesses every other element. The line size is 28 = 256 characters and so 256
2 = 128

will access the same line. The first access will miss, the rest will hit. So for the first j iteration the hit ratio is 127/128. The total
amount of memory accessed is 1024 characters, but that covers 2048 characters of memory because of the skipping. That is much
smaller than the 2 MiB capacity so on the second j iteration every access will hit.

The overall hit ratio is 1
2

(
127
128 + 1

)
= 255

256 .

©What is the minimum value of ILIMIT needed to fill the cache?

The cache capacity is 221 characters each iteration covers two characters (one read, one skipped) so to fill the cache ILIMIT=220 .

8

Problem 4, continued:

(c) The code below runs on the same cache as parts above. Initially the cache is empty; consider only accesses
to the arrays. (6 pts)©Choose values for KLIMIT, MLIMIT, KSHIFT, and MSHIFT so that array matrix is completely removed from
the cache with the minimum number of accesses (to b). That is, each j iteration must begin with matrix
reloaded. Don’t forget that the cache is set associative.

The first step is to determine how much space matrix takes. Since each element is a 4-character integer and 1024 of them are being
accessed it covers 4096 characters or 4096/256 = 212−8 = 16 lines. The addresses range from 0x1000000 to 0x1000ffc.
Those addresses have indices from 0 to 0xf. (The index bits start at the third hexadecimal digit.)

To remove matrix from the cache accesses to b must use each of those indices twice (because the cache is two-way set associative)
and with a different tag each time. To generate each index with the minimum number of accesses set MLIMIT = 0xf; and MSHIFT
= 8;, this shifts the m into the index part of the address. To generate each tag twice set KLIMIT = 2; and KSHIFT = 20;,
this shifts k into the tag part of the address. The solution would also work with k and m swapped and with a larger KSHIFT.

Array matrix can be evicted with a small number of accesses because its index bits are the same as b, zeros. If index bits 12 or
higher were different, say b == 0x1001000, it would take many more accesses (using the code below) to evict matrix.

Note: The exam was given on the opening day for The Matrix Reloaded.

int *matrix = 0x1000000; // sizeof(int) = 4 characters
char *b = 0x2000000;
int sum, dummy, i, j, k, m;

// Solution
int KLIMIT = 2; int MLIMIT = 16;

int KSHIFT = 20; int MSHIFT = 8;

for(j=0; j<3; j++)
{

for(i=0; i<1024; i++)
sum += matrix[i];

for(k=0; k<KLIMIT; k++)
for(m=0; m<MLIMIT; m++)
dummy += b[(k << KSHIFT) + (m << MSHIFT)];

}

9

Problem 5: Answer each question below.

(a) Suppose the instructions below are being considered for the latest extension of the MIPS ISA. For each
new instruction explain why it should be added or why it should not be added. Consider a variety of factors
related to the ISA and implementation. (10 pts)©A mask instruction. Based on analysis of benchmarks.
New Instruction
mask $t1, $t2, 5

Equivalent Code Using Existing Instructions
srl $t1, $t2, 5
sll $t1, $t1, 5

Yes, it saves an instruction and looks easy implement. Saving one instruction may not sound like much but if that one instruction is
5% of the dynamic instruction count the minor addition would be very cost effective.

Grading Note: Some students pointed out that an andi instruction can perform the same function and so the mask instruction is
not needed. That’s only partly correct since the immediate value is limited to 16 bits whereas mask could mask any number of bits.

©An integer negate instruction. Based on analysis of existing code. With this extension sub does not have to
be used for negation!!!
New Instruction
neg $t1, $t2

Equivalent Code Using Existing Instructions
sub $t1, $0, $t2

Since sub does the exact same thing there is no reason to add neg. Adding neg would waste an opcode and complicate decoding.
A better alternative is to have the assembler recognize neg as a synthetic instruction and have it substitute sub.

©An indirect load. Useful based on most existing benchmarks.
New Instruction
lwi $t1, 0($t2)

Equivalent Code Using Existing Instructions
lw $t1, 0($t2)
lw $t1, 0($t1)

This would require using the MEM stage twice, something no other instruction does and which does not follow RISC principles (which
are intended to simplify implementation). It should not be added.

10

Continued from previous page.

©Added functionality for the sllv instruction. The existing sllv looks at the low 5 bits of the rt register,
ignoring the other bits. It only shifts left. The improved instruction also shifts right if the rt register holds
a negative value and left if it’s positive.
Improved Instruction
sllv $t1, $t2, $t3 # Shifts right if $t3 negative.

Equivalent Code Using Existing Instructions
bltz $t3, SHIFTRIGHT
nop
sllv $t1, $t2, $t3
j DONE

SHIFTRIGHT:
sub $at, $0, $t3
srlv $t1, $t2, $at

DONE:

If bidirectional shifts were used a bidirectional shift instruction should be added, but NOT by changing the behavior of an existing
instruction. There might be programs in which sllv instructions execute with a negative value in rt. The new behavior would
break those programs and the programmers could rightly point out that “ignored” is not the same thing as “assumed to be zero.”
(And even if they didn’t have a good argument it doesn’t matter because the customer is always right!) The behavior of sllv should
not be changed, instead a new instruction could be added.

Grading Note: No one got this one right. Maybe next semester I’ll bring in an actual pair of golden handcuffs when talking about ISA
compatibility and IA-32. Hmmm, would the student tech fee cover the cost?

11

(b) Answer the following questions about exceptions. (5 pts)©Why are precise exceptions necessary for instructions like lw but optional for instructions like div?

If an instruction raises a precise exception then it can be re-executed after the handler does whatever it is it has to do. If an instruction
raises an exception that is not precise then the best the handler can do is restart the program several instructions after the faulting
instruction, there is no way to re-execute it.

In normal use lw (and other memory access instructions) will raise exceptions. The exception handler tends to the memory system
(updating the TLB or swapping pages) and then restarts lw and the program proceeds as if nothing happened. Without precise
exceptions there would be no easy way to implement modern memory systems.

A divide would raise an exception because of a division by zero or some other problem. In general, there is nothing the handler can
do to fix the problem since the divide instruction gave the best answer it could. With no reason to restart there is no need for precise
exceptions. There still may be situations where they are useful, say substituting a large value on a division by zero, but that’s not as
critical as handling TLB misses.

©What can handlers for instructions that raise precise exceptions do that handlers for other instructions
cannot? Explain how that capability is used for lw.

They can see the state of the program just before the faulting instruction executed. That enables the handler to restart the instruction,
if appropriate. It is used to restart lw after performing a routine memory system task.

(c) Delayed branches are common in RISC ISAs. (5 pts)©Explain why delayed branches were useful in early RISC processors, such as the 1-way statically scheduled
MIPS implementation covered in class.

Early RISC processors (and some modern ones too) used short pipelines, say five stages (as used in class). The delay slot instruction
is fetched in IF while the branch computes its direction and target in ID; in the next cycle the target or fall-through is fetched. Since
the delay slot instruction is executed either way (normally) there is no branch penalty on a taken branch (bubble).

©Why are delayed branches of less benefit with more recent implementations?

In a two-way or higher superscalar processor at least one instruction past the delay slot is fetched by the time the branch is resolved.
If the branch is mispredicted those instructions will have to be squashed. The number of squashed instructions is one less than without
delayed branches, in deeply pipelined systems that might mean squashing 15 instead of 16, the difference is greater with dynamic
scheduling. This small benefit is only realized on a misprediction (say 5% of the time). It is not worth the complexity of the control
logic.

Comment: Once an instruction is in an ISA it cannot be removed. If a new ISA were designed for compact implementations (say,
embedded on a chip with other logic and memory and used to control something like a cell phone) it could use a delayed branch. If
an ISA were designed for high-speed implementations (for general-purpose use) then a delayed branch would be omitted.

12

(d) Why might a gshare branch predictor with a longer global history register (GHR) have a significantly
longer warm up time? (5 pts)

With a longer GHR there are more possible GHR values for a particular branch. (In an extreme case the branch is in a loop with
another branch having random outcomes.) There is a pattern history table (PHT) entry for each GHR value, each of these entries
must be warmed up for the branch. The more possible GHR values there are for the branch the longer it takes the GHR to warm up
for the branch.

Grading Note: Many answered that it takes longer for the GHR to fill up with branch outcomes. Suppose the GHR were increased
from 10 to 16 bits. That change would affect six branches, out of say, 100 million.

A correct answer could start with “It takes longer for the GHR to full up. . .” but it would have to explain that this was important
when entering a loop and that the problem was the irrelevant outcomes from the part of the GHR written before the loop was entered.

(e) Why might a functional unit with an initiation interval of 4 and latency of 3 be less costly (as in dollars)
than a functional unit with an initiation interval of 1 and a latency of 3?(5 pts)

Include an illustration with your answer.

Sorry, no illustration. If someone asks I’ll put one in.

If a functional unit has an initiation interval of 1 then new instructions can enter every cycle and so there must be enough hardware to
simultaneously execute 4 instructions. If the initiation interval were 4 then the same small piece of hardware could be used repeatedly
for the same instruction, as in a multiplier or divider. Multipliers usually are pipelined (initiation interval 1) but dividers are not.

13

