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Problem 1: The execution of a MIPS code fragment on a dynamically scheduled machine is shown in the
tables and in the labels on the diagram, both on the next page. The tables show the contents of the ID
Register Map, Commit Register Map, and the Physical Register File at each cycle. The diagram shows the
values on certain wires at certain cycles. For example, 4:65 means that at cycle 4 the labeled wire holds
value 65.

The following are functional unit segment labels: Load/store, L1 L2; floating-point add, A1 A2 A3 A4;
floating-point multiply, M1 M2 M3 M4 M5 M6; integer, EX. The register maps handle both integer and
floating-point registers.

(a) Write a program consistent with these tables and labels.(12 pts)

Show a pipeline execution diagram, be sure to show where each instruction commits.

Choose consistent instructions.

Choose consistent registers. If a register number cannot be determined, use a question mark.

(b) Complete the tables on the next page as follows:(8 pts)

Show where registers are added to, “]”, and removed from, “[”, the free list.

Show the values on the line marked X in the illustration.
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Problem 1, continued: See previous page for instructions.
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IF ID

IF ID

IF ID

IF ID

IF ID

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X (See Diagram)
# ID Map Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f12 7 50 93 59
r5 3 65
f10 10 20
# Commit Map Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f12 7 50 93 59
r5 3 65
f10 10 20
# Phys. Reg. File Cy 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 0
7 0.
10 0.
20 0.
50 0.
59 0.
65 100
93 0.
# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Problem 2: The diagram below shows the branch outcome patterns for a branch. (15 pts)
BIGLOOP:

B1: 0x1000 beq $t1, $t2, SKIP1 N N N T T N N N T T N N N T T
...
B2: 0x1020 beq $v0, $v1, SKIP2
...

0x2010 j BIGLOOP

How accurately would branch B1 be predicted by a bimodal (one-level) branch predictor with a 214-entry
branch history table?

How accurately would branch B1 be predicted by a local history predictor with a 10-bit local history and a
214-entry branch history table?

What is the minimum local history size needed to predict B1 with 100% accuracy (after warmup). No partial
credit without an explanation.

Find a pattern for branch B2 that will reduce the accuracy of the local predictor on branch B1. The branch
history table (not to be confused with the pattern history table) remains 214 entries and the history length
remains 10 bits.
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Problem 3: Answer the following load/store unit questions.

(a) Why don’t store instructions write to the cache until they commit? (5 pts)

For the two problems below consider the four instructions (repeated) which are in the reorder buffer of a
dynamically scheduled 1-way system. On a cache miss data will arrive in four cycles or more. The effective
address for the second load is 0x1000. (10 pts)

(b) Describe a scenario in which the data for address 0x1000 is not cached but the second load does not wait
for its data.

Show a pipeline execution diagram.

Explain the involvement of the load/store queue and why the second load does not wait more than a cycle
or two.

First: lw $t1, 0($t2)

addi $t0, $0, 4720

sw 0($t1), $t0

Second: lw $t3, 0($t4)
Eff. Addr is 0x1000

(c) Describe a scenario in which the data for address 0x1000 is cached but the second load waits for its data
at least four cycles.

Show a pipeline execution diagram.

Explain the involvement of the load/store queue and why the second load waits.

First: lw $t1, 0($t2)

addi $t0, $0, 4720

sw 0($t1), $t0

Second: lw $t3, 0($t4)
Eff. Addr is 0x1000
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Problem 4: The diagram below is for a 2-MiB (221 bytes) cache on a system with 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants. (7 pts)

Fill in the blanks in the diagram.
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Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Associativity:

Memory Needed to Implement (Indicate Unit!):

Show the bit categorization for a four-way set-associative cache with the same capacity and line size.

Address:
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Problem 4, continued:

(b) The code below runs on the cache from the previous part. When the code below starts running the cache
is empty. Consider only accesses to the array. (7 pts)

char *a = 0x1000000; // sizeof(char) = 1 character
int sum, i, j;
int ILIMIT = 1024;

for(j=0; j<2; j++)
for(i=0; i<ILIMIT; i++)
sum += a[ i * 2 ];

What is the hit ratio for the program above?

What is the minimum value of ILIMIT needed to fill the cache?

(c) The code below runs on the same cache as parts above. Initially the cache is empty; consider only accesses
to the arrays. (6 pts)

Choose values for KLIMIT, MLIMIT, KSHIFT, and MSHIFT so that array matrix is completely removed from
the cache with the minimum number of accesses (to b). That is, each j iteration must begin with matrix
reloaded. Don’t forget that the cache is set associative.

int *matrix = 0x1000000; // sizeof(int) = 4 characters
char *b = 0x2000000;
int sum, dummy, i, j, k, m;

int KLIMIT = int MLIMIT =

int KSHIFT = int MSHIFT =

for(j=0; j<3; j++)
{

for(i=0; i<1024; i++)
sum += matrix[ i ];

for(k=0; k<KLIMIT; k++)
for(m=0; m<MLIMIT; m++)
dummy += b[ ( k << KSHIFT ) + ( m << MSHIFT ) ];

}
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Problem 5: Answer each question below.

(a) Suppose the instructions below are being considered for the latest extension of the MIPS ISA. For each
new instruction explain why it should be added or why it should not be added. Consider a variety of factors
related to the ISA and implementation. (10 pts)

A mask instruction. Based on analysis of benchmarks.
New Instruction
mask $t1, $t2, 5

Equivalent Code Using Existing Instructions
srl $t1, $t2, 5
sll $t1, $t1, 5

An integer negate instruction. Based on analysis of existing code. With this extension sub does not have to
be used for negation!!!
New Instruction
neg $t1, $t2

Equivalent Code Using Existing Instructions
sub $t1, $0, $t2

An indirect load. Useful based on most existing benchmarks.
New Instruction
lwi $t1, 0($t2)

Equivalent Code Using Existing Instructions
lw $t1, 0($t2)
lw $t1, 0($t1)

Added functionality for the sllv instruction. The existing sllv looks at the low 5 bits of the rt register,
ignoring the other bits. It only shifts left. The improved instruction also shifts right if the rt register holds
a negative value and left if it’s positive.
Improved Instruction
sllv $t1, $t2, $t3 # Shifts right if $t3 negative.

Equivalent Code Using Existing Instructions
bltz $t3, SHIFTRIGHT
nop
sllv $t1, $t2, $t3
j DONE

SHIFTRIGHT:
sub $at, $0, $t3
srlv $t1, $t2, $at

DONE:
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(b) Answer the following questions about exceptions. (5 pts)

Why are precise exceptions necessary for instructions like lw but optional for instructions like div?

What can handlers for instructions that raise precise exceptions do that handlers for other instructions
cannot? Explain how that capability is used for lw.

(c) Delayed branches are common in RISC ISAs. (5 pts)

Explain why delayed branches were useful in early RISC processors, such as the 1-way statically scheduled
MIPS implementation covered in class.

Why are delayed branches of less benefit with more recent implementations?
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(d) Why might a gshare branch predictor with a longer global history register (GHR) have a significantly
longer warm up time? (5 pts)

(e) Why might a functional unit with an initiation interval of 4 and latency of 3 be less costly (as in dollars)
than a functional unit with an initiation interval of 1 and a latency of 3?(5 pts)

Include an illustration with your answer.
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