EE 4720 Homework 2 solution Due: 9 October 2002

ISA manuals are needed for some problems below. Links to the ISA manuals can be found on the new
Problem 1. Consider the following SPARC instructions:

sub %g3, %g2, %gl gl = g3 - g2;
and %gl, Oxf, %gl ! gl = gl & Oxf

Wouldn’t it be nice to have a sub.and instruction that would do both:

sub.and %g3, %g2, O0xf, %gl ' gl = (g3 -g2) & Oxf

(a) Could the SPARC V9 ISA easily be extended to support such double-op instructions? If yes, explain
how they would be coded.

Discussion: In the prob\@m "Q&S'\\y De extended” means QXT.Q“QU\% the 1SA without &ddmg QﬂUTQ\y new instruction formats. The
instructions above take two TQg\SIQf source OPQVM\GS and an immediate source OPQT&T\G. Ord'mgry TWo-source ng\SIQT, one destination
\"Qg\SIQf instructions are coded us’mg Format 3 with the i ('\meG'\MQ) DIT set 10 zero. That format has an unused field, asi, which
can be used for the immediate in the GOUD\Q-OP instructions. The asi fleld is OT\\y @'\gm Dits, but that's QﬂOUgh for the immediates
in the @Xamp\@s above.

solution: Yes. Code the GOUD\Q-OP instructions US\ﬂg SPARC Format 3 (i=0) and p\ae'mg the immediate value in the asi field.

(b) Estimate how useful double-op instructions would be, using the data below. Usefulness here is con-
veniently defined as the dynamic instruction count. Consider a large class of double-op instructions that
operate on two source registers and an immediate. For example, add.add, s11.add, and and.or. The data
below does not provide important statistics needed to estimate the usefulness. Describe what statistics are
needed and make up numbers. The made up numbers can be totally arbitrary (as long as they are possible).

The data below show instruction category and immediate sizes running the gcc compiler (ccl). Assume
that this is a representative program and so the results apply to others. The data show the total number
of instructions, and the breakdown by category, including ALU instructions that use an immediate, ALU
instructions that use two source registers, etc. Following that histograms of the immediate sizes are shown
for four instruction categories. This is very similar to the data shown in class. The percentage at each size
and a cumulative percentage are shown. For example, 11.12% of ALU immediate instructions use two bits
and 55.40% use two bits or fewer.

QUM\Ung usefuiness means determ'mmg now many p&\FS ot dynam'\e ingtructions can be combined into & GOUD\Q-OP instruction.
Th‘éy can be combined if the first of the pEX\T WriTes o r@g‘\ster that is omy used by the second of the p&'\T (OIhQYW'lSQ the first instruction
could not be e\'\m'mmd) and if the immediate will Ait in the asi field (SQQ the solution to the pTQ\/'l()US p&l't).

The data below can be used to determine how many immediates would fit in the asi field, which i8 e‘\gm bits. The “ALU
Immediate Size Distribution” table indicates that 95.13% of ALU instruction immediates are Q'\gm DIts or less, whieh 18 gOO(l for the
GOUD\Q*OP instructions.

Using the data below one can only get a rough estimate of how many combinable Pairs there are. One of each pair will be &
TWOo-source register ALU instruction, which FQPTQSQHT,S 15.3% of all instructions. Assum'mg that each of these can be one of & pQ'\Y
(El bad gssumpt'\on, but me&PS the best we can do with the data other than guessmg) and assuming that 95.13% of the immediate
instructions have small Q\'\()Ugh immediates y\Q\GS 14.6% of the dynam'\e ingtructions. Assum'mg instruction count is proport'\ong\ 1o
axecution time, the GOUD\Q-OP instructions will reduce execution time from 1.0 10 .854.

[drop] % echo /opt/local/lib/gcc-lib/sparc-sun-solaris2.6/2.95.2/ccl \
els.i -03 -quiet isize
Analyzed 156423240 instructions:
48483403 (31.0%) ALU Immediate
23886739 (15.3%) ALU Two Source Register
6353567 (4.1%) sethi
34039161 (21.8}) Loads and Stores
30331049 (19.4J) Branches
13329321 (8.5%) Other

http://www.ece.lsu.edu/ee4720/reference.html

ALU Immediate Size Distribution
Bits Pct Cum

25.96% 25.96% *kskskskokskokkokokokokokokokokskok
18.32% 44.28% skkkokkskskkkskokk
.12% B5.40Y% skxxxkkk

L59% T0.99Y% kkkkkkkkkkk
.16 74.15%, *¥x

.10% 80.25Y #***x

.31% 87.56% **kxxx*

.81% 94.37Y% **xxx

.76% 95.13% *

.13% 97.267 *x

.64% 99.90% **

.01% 99.91% *

.08% 99.997% *

.01% 100.00% *

=
[S2 0 o

=
= O ©W 00 N O O d W NN+~ O

=
N
O O O NNOON O W

—
w

SETHI Immediate Size Distribution

Bits Pct Cum

0 0.00% 0.00% =

1 0.00% 0.00% *

2 0.02% 0.02% =

3 0.72% 0.74% =

4 0.43% 1.17 *

5 0.09% 1.26% *

6 0.66) 1.93 *

7 2.00% 3.93% *x

8 4.53Y, 8.45%, ***x
9 3.147% 11.60% **x*
10 5.86% 17.467 ***xx*
11 5.54% 23.00% %k

12 T2.67% 95.6TY skskskokskokokskoksk skokk ok ok sk ok 3k s ok ok sk ok 3 ok ok ok ok ok 3 ok 3k sk ok k sk ok ok ok 3 ok ok s ok k sk ok 3 ok K
13 0.09% 95.76% *
14 0.13% 95.89% *
15 0.10% 95.99% *
16 0.01% 96.00% *
17 0.00% 96.01% *
18 0.49% 96.50% *
19 3.14% 99.63% ***
20 0.02% 99.66% *
21 0.33% 99.997 *
22 0.01% 100.00% *

Memory Offset Distribution

Bits Pct Cum

4.93% 4.93% x*k*x

0.11% 5.04% *

2.51% 7.55) *x

15.95% 23.50% *k*skkskskokskkkkk

24 .41Y% AT .91Y% skkskkskskokskkokkkokkkokk
10.367% 58.27% ***kkx*x

4.90% 63.17% ***x

D O W N = O

70.
75.
80.
96.
.30%
100.
100.

99

067%
85Y%
82Y%
92y

00%
00%

kKKK 3k

k% kK k

k% %k

*ok ok KK KKKk Kk K

*k

*

Displacement Distribution

7 6.89Y%
8 5.79Y%
9 4.98Y
10 16.09%
11 2.38%
12 0.70%
13 0.00%

Branch

Bits Pct
0 0.00%
1 0.00%
2 13.06Y%
3 22.20%
4 16.58%
5 18.94Y
6 15.69Y%
7 6.74Y
8 3.47Y
9 1.63Y%
10 0.71%
11 0.27%
12 0.41%
13 0.01%
14 0.00%
15 0.00%
16 0.21%
17 0.01%
18 0.08%
19 0.00%
20 0.00%
21 0.00%
22 0.00%

Problem 2:

(a) The Alpha does not have a general set of double-op instructions but it does have one that can replace
the two SPARC V9 instructions below. What is it? Replace the two instructions below with the Alpha
instruction. (For full credit [another 0.5 point, maybe] take into account that SPARC V9 and not SPARC

Cum

0

35
51

99

100

V8 was specified.)

s1l %g2, 2, %gl

.00%

0.
13.
.26Y%
.84,
70.
86.
93.
96.
98.
99.
99.
.69Y%

99.

99.

99.

99.

99.
100.
100.
100.
.00%
100.

00%
06%

79%
489,
22,
69%
31%
02%
29%

71%
71%
71%
91%
92,
00%
00%
00%

00%

add %g3, %gl, %gl

S4ADDQ rl, r2, r3

(b) SPARC V9 does not have a full set of predicated instructions, but it does have a predicated instruction
that can replace the code fragment below. What is it?

subcc %gl, 0, %g0

be SKIP

nop

add %g3, 0, %gh
SKIP:

movrnz %gl, %g3, %gl

*
ok ok okok ok ok ok ok

ok ok ok ok ok ok ok ok ok ok Kok kK
ok ok ook ok ok ok ok ok ok

ok ok ok ok ok ok ok ok ok ok koK
koo kokokokok ok ok
*okokokok

K%k

*%

I R R

L

It’s time to go instruction hunting!

g2 << 2;
g3 + gl

I gl
I gl

! Set integer condition codes.
! Branch if result equal to zero.

| g4 =g3+0

Problem 3: _ Complete Spring 2002 Homework 2 Problems 2 and 3,

(At http://www.ece.lsu.edu/ee4720/2002/hw02.pdf.) (The Verilog part is optional.) This is a very
important type of problem, similar problems will be appearing all semester. You must solve the problem,
that is, scratch your head, figure it out, and work it through. If you're stuck, feel free to ask for help. When
you're done look at a solution and assign yourself a grade. Grade on a scale of 0 to 1 (real, not integer!)
Not solving it or solving it with too many glances at the solution will leave you ill-prepared for the
test. Yes, you can solve it the night before the test (if you have time), but that won’t help you understand

everything presented in class between now and then. You have been warned.

http://www.ece.lsu.edu/ee4720/2002/hw02.pdf

