
Name Solution

Computer Architecture

EE 4720

Final Examination

12 December 2002, 10:00–12:00 CST

Alias Currently Accurate, Full, and Complete

Problem 1 (10 pts)

Problem 2 (17 pts)

Problem 3 (11 pts)

Problem 4 (17 pts)

Problem 5 (45 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: In the diagram below certain wires are labeled with cycle numbers and, in some cases, values
that will then be present, for example, 2:9 indicates that at cycle 2 the wire will hold a 9. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. Write a program consistent
with these labels. There are no stalls during the execution of the code. The code should use five instructions,
use the PED to help solve the problem. (10 pts)©Write a program consistent with these labels.©Use labels for branch targets (if any) and label the target line.

Solution shown below.

Grading Note: Many people got this 100% correct, but I was hoping everyone would. For those currently taking EE 4720, study this
well, it’s not that difficult to get full credit.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC 6

4:8

2

3

6

6

1:106:11

4:-4
15:0

Cycle 0 1 2 3 4 5 6 7 8
LOOP:
add $10, $2, $1 IF ID EX ME WB
add $9, $4, $10 IF ID EX ME WB
lw $11, 8($6) IF ID EX ME WB
bneq $1, LOOP IF ID EX ME WB
sw 0($11), $7 IF ID EX ME WB

2

Problem 2: The PED below shows execution on a defective 1-way dynamically scheduled machine using
Method 3. A diagram appears on the next page. The circuitry that’s supposed to restore the ID map after
a branch misprediction is not working, the ID map is left unchanged. Everything else works correctly, in
particular the free list is correctly restored to the exact state it was right after the lw. (17 pts)

(a) For this incorrect execution:©Show where each instruction commits.©Complete the ID map. (See the phys. reg. file for the free list.)©Complete the commit map, include the initial state.©Complete the physical register file.© In addition to other information the physical register file should include a [in the cycle a register is removed
from the free list and a] in the cycle it is returned to the free list.©Circle incorrect entries (due to the defect) in the tables below.

SOLUTION. (See next page for notation and discussion.)
lw loads a 0x200, lb loads a 0x202
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
bne $s1, $s2 SKIP IF ID Q B WC
lw $t1, 16($t1) IF ID Q L1 L2 WC (18)
addi $t4, $t4, 3 IF ID Q EX WB x (squash) (20)
ori $t5, $t4, 0x30 IF ID Q EX WB x (squash) (23)
nop ... (lots of nops)

SKIP:
lb $t1, 16($t1) IF ID Q L1 L2 WC (20)
addi $t4, $t4, 3 IF ID Q EX WB (23) C
ori $t5, $t4, 0xc0 IF ID Q EX WB (30) C
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ID Map
t1 3 18 20
t4 7 20 23
t5 10 23 30
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Commit Map
t1 3 18 20
t4 7 23
t5 10 30
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Physical Reg File. All values in hex. Free List: 18, 20, 23, 30, 37
3 100]
7 101
10 102
18 103 [200]
20 104 [104] [202{]}
23 105 [134] [{107} {]}
30 106 [{1c7}
37 107
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

3

Problem 2, continued: The illustration below is similar to one used in class; it is provided for reference.

In the solution on the previous page incorrect entries are surrounded by braces, for example 107. The numbers in parenthesis on the
PED lines are the physical register numbers assigned to the instructions. They are there as an aid in solving the problem.

Because of the defect the ID map is not recovered after the branch misprediction. This causes two execution problems. First (most
people got this) the addi on the correct path reads the wrong t4: it should read the one in physical register 7 but it reads the one in
20. As a result the values written in the physical register file are wrong. The second problem (few got this) is that when instructions
pass through ID they read the wrong incumbent. For example, the addi on the correct path should read 7 as the incumbent, but
instead it reads 20. As a result the wrong register will be placed in the free list when addi commits, which is what part (b) is about.

25:21

20:16

rsPR

dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

P
C

dst
S

t: C
,X

0,0

ROB #

C,X
Addr

D In

R
eo

rd
er

 B
uf

fe
r

dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ROB #
tail

head

IDIF

rtPR

F
re

e
Li

st

dstP
R

dstP
R

dstPR

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

EX

dstPR

dstVal.

Decode
dest. reg

incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

dst

incmb
dstPR

Addr

D In

C Reg. Map

Data

incmb

dstPR
R

ec
ov

er

Q

(b) Suppose 1000 instructions later an instruction finds 0x4720 in register t4 despite the fact that the code
above wrote something else and no instruction wrote t4 after that. (If the free list is used improperly the
question might apply to t5, not t4. See the diagram for hints on proper use of the free list.)

Note: On the original exam register t5 was used instead of t4. Register t5 can not change unexpectedly,
though it still has an incorrect value.©How could that have happened? Be specific in how it’s due to the defect.

As explained above, the correct path addi reads the wrong incumbent and so frees the wrong physical register, in particular the
physical register holding t4. At some point that physical register will be assigned to a new instruction which will write a value in it,
perhaps 0x4720.

(c) How could the defect have gone undetected?!? (That’s not the question.)©Suppose the lw raised an exception in L2 on this defective hardware. Would the code above execute incor-
rectly? Explain. Remember, the only defect is with recovering the ID map on a branch misprediction. Note:
Original exam omitted “on a branch misprediction.”

The mechanism used to recover the ID map on a branch misprediction is different than the one used for exceptions. The problem
stated that other than ID recovery on a branch misprediction, everything was working correctly. The lw and lb instructions execute
before the addi and ori instructions. When the load reaches the ROB head exception recovery will start, part of that is copying
the Commit Map to the ID Map, replacing the incorrect ID Map with a correct one. For that reason the code executes correctly.©Now suppose the lb raised an exception in L2 on this defective hardware. Would the code above execute
incorrectly? Explain. Once again, the only defect is with recovering the ID map on a branch misprediction.

See the solution to the part above.

4

Problem 3: The code below runs on three systems: one using a bimodal (one-level) predictor, I; one using
a two-level local history predictor, L; and one using a two-level gshare predictor, G. The global history
register is 16 bits and the local history is 16 bits. The branch history tables have 256 entries. Assume
that each branch below has its own BHT entry. The branch outcomes for B2 and B3 are provided for your
solving convenience. Note that B3 has the same pattern as B2 but at a different phase, the phase difference
is important. (11 pts)

BIGLOOP: LOOP:
B1: bne $t1, $0, SKIP # Random, independent, taken 25% of time.
...
SKIP:
B2: bne $t2, $t5, SKIP2 # Pattern: N N N N N N T T N N N N N N T T N N N N N N T T
...
SKIP2:
B3: bne $t7, $t8, SKIP3 # Pattern: N N N N N T T N N N N N N T T N N N N N N T T N
...
SKIP3:
B4: bne $t9, $t10, LOOP # Iterates 50 times.
...
j BIGLOOP
nop

(a) Determine the prediction accuracy for each branch and each predictor. The accuracies should be after
warmup. Do not compute the number of entries. Approximate the accuracy of B1 predictions.©B1 on I: Accuracy: 70%©B1 on L: Accuracy: 70%©B1 on G: Accuracy: 70%©B2 on I: Accuracy: 62.5%©B2 on L: Accuracy: 100%©B2 on G: Accuracy: 100%©B3 on I: Accuracy: 62.5%©B3 on L: Accuracy: 100%©B3 on G: Accuracy: 85%©B4 on I: Accuracy: 98%©B4 on L: Accuracy: 98%©B4 on G: Accuracy: 98%

Since branch B1 is taken 25% of the time the two-bit counter used to predict it will likely be 0 or 1 (with probability 36
40), therefore

the prediction accuracy of B1 is about 75% (it is exactly 70%, explained below). The accuracy is the same on all predictors because
correlating the prediction with past occurrences of the same branch (local) or other branches (gshare) does not help predict the
random branch.

The bimodal prediction accuracy for B2, B3, and B4 is straightforward.

5

Branch B2 and B3 follow a regular pattern that repeats every eight occurrences. This is small enough for the local predictor to
achieve a 100% prediction accuracy. Each iteration of the loop has four branches, so the 16-bit GHR can “remember” four iterations.
It so happens that B2 does whatever B3 did on the previous iteration. Gshare easily remembers one iteration back, so the prediction
accuracy of gshare for B2 is 100%.

Determining the gshare prediction accuracy for B3 is more involved. The prediction accuracy depends upon how much of the repeating
pattern the GHR holds. The pattern consists of four branches (B1-B4):

B1: x x x x x x x x ...
B2: n n n n n n t t ...
B3: n n n n n t t n ...
B4: T T T T T T T T ...

GHR: xnnTxnnTxnnTxnnTxnnTxntTxttTxtnT (repeats)
Iter: 0 1 2 3 4 5 6 7 0 1 ...

The x outcome for B1 can be either N or T, the outcomes for B2 and B3 are shown in lower case so they can be distinguished from
B4 when looking at the GHR. The predictability of B3 depends on the iteration (see the diagram above). First consider iteration
0. The outcome is N and this outcome only occurs when the outcomes in the previous iteration (7) are xtnT. For iteration 0 the
GHR needs to be five bits to see enough: tnTxn (the last x isn’t needed). Similarly, iterations 6 and 7 can be predicted using only
the previous iterations. Since the GHR is sixteen bits it is large enough to predict these iterations with 100% accuracy. Iterations
1 through 5 require more than five bits. Iteration 1 needs to see iteration 7, requiring 9 bits (which we have). For similar reasons
iteration 2 needs 13 bits, iteration 3 needs 17 bits (bzzzt! [that’s the GHR-is-too-small buzzer]), and iteration 4 needs 21 bits (bzzzt!).
Iteration 5 also needs 21 bits (bzzzt!) since the GHR value at B3 for iterations 4 and 5 would be different. Since the GHR is only 16
bits the GHR contents will be identical when predicting B3 in iterations 3, 4, and 5. This would not be a problem if the outcome of
B3 was the same in all these iterations (all taken or all not taken), but it’s not taken in iterations 3 and 4 but taken in iteration 5.
As a result the two-bit counter will mostly predict not taken but the branch will sometimes be taken. Because of the random branch
there are really sixteen (four x’s) two-bit counters for iterations 3-5 and they are accessed in random order. They will mostly be
at zero or one. As a rough estimate, (which is enough for full credit) assume the counter is always zero or one, then the prediction
accuracy of iterations 3 and 4 will be 100% and iteration 5 will be 0%. Taking into account that the counter is sometimes 2 and 3,
(see below) we get a prediction accuracy of 12

15 = 80% for iterations 3 and 4 and a prediction accuracy of 20% for iteration 5.

The overall prediction accuracy for branch B3 is the average of each iteration: 1
8 (5 * 100% + 2 * 80% + 20%) = 85%. So

gshare’s accuracy on B2 is 85%.

To precisely determine the prediction accuracy on B1 (and also B2, and to a very minor extent, B4) one needs to compute the
probability that the counter value is less than 2. In the other cases the counter value is not effected by the random branch so their
exact value can be computed, usually 0 or 3. Consider B1 using the bimodal predictor. Because it’s taken only 25% of the time
the counter will mostly be less than two, but because outcomes are independent there is a chance the branch will be taken twice
in a row, leaving the counter at 2 (or even 3). Computing these probabilities is straightforward, and uses a standard technique in
queuing theory: Markov chains. A Markov chain is a mathematical model that can be used to represent the counter and other systems
which can be represented by state transition diagrams with probabilities associated with arcs. There are four states, denote them s0

(count is 0), s1 (count is 1), etc. There is an arc from s0 to s1 and it is associated with the transition probability (branch taken
probability), 0.25, which we will denote p. There are similar arcs from s1 to s2 and s2 to s3. There are also arcs from s3 to s2,
etc. representing the not-taken cases, they are associated with the not taken probability, 0.75 or 1 − p.

It turns out it is surprisingly easy to solve for the state probabilities. The key observation is that the number of times the counter
is incremented from 0 to 1 (or 1 to 2, etc) must be equal to the number of times it is decremented from 1 to 0 (or 2 to 1, etc)
(plus or minus 1, which is insignificant). Overloading the notation, let s0 denote the probability of the counter being 0. Then
s0p = s1(1 − p) (what goes up must come down, or more formally, a balanced flow equation). Generalizing, sip = si+1(1 − p)

for i ∈ {0, 1, 2}. With a few substitutions and some manipulation we find si = s0

(
p

1−p

)i

. Obviously
∑3

i=0 si = 1 and so∑3
i=0 s0

(
p

1−p

)i

= 1. Solving for s0 we get s0 = 1
/ [∑3

i=0

(
p

1−p

)i
]
. Since the summation is only over four terms one

could compute s0 at this point, but we don’t have to since there is a closed-form expression for that summation:
∑n−1

i=0 xi = xn−1
x−1

6

and so

s0 =
[

p

1 − p
− 1

]/ [(
p

1 − p

)4

− 1

]
.

For branch B1 p → 0.25 and so s0 = 27
40 , s1 = 9

40 , s2 = 3
40 , and s3 = 1

40 . The branch prediction accuracy for all predictors
on B1 is exactly 3

4
27+9
40 + 1

4
3+1
40 = 70%, reasonably close to the 75% estimate based on the assumption that the counter never

reaches 2.

Grading Notes: Way too many people got B1 wrong, the most common wrong answer was 25%. That would only be correct if
a taken prediction were made every time. (Yes, I understand that with more time . . .) No one realized that 75% would be an upper
bound on B1’s prediction accuracy. Many had trouble with gshare, or decided not to spend time on it.

(b) A gshare predictor using a 15-bit GHR (instead of the 16-bit GHR used above) should give the same
prediction accuracy for branch B2. How small can the GHR be made without changing the prediction
accuracy of B2? Assume there are no collisions. Note: The original question asked about B3.

Branch B2 does whatever B3 did in the previous iteration, so the GHR can predict it at 100% accuracy with as few as three bits.

The original question asked about B3. Prediction accuracy is determined by how many previous branches the predictor can see. At
four branches per iteration a 16 bit GHR holds four previous B3 outcomes. Reducing to 15 bits looses the oldest B3 outcome, however
that information is in B2 because its outcome is the same as B3 in the previous iteration. Therefore the GHR can be reduced to 13
bits without changing predictor accuracy. (At 13 bits B2 is the oldest outcome.)

(c) For the local predictor, how small can the local history be made without affecting the prediction accuracy
of B2 and B3?

To distinguish the first of the two taken branches from the last not-taken branch the local history must be at least six bits.

7

Problem 4: The diagram below is for a cache with 256-character lines on a system with 8-bit characters.
(17 pts)

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.©Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32

32 b

31:2431:24

23:8

23:2

23:8

23:2

©Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 24

Index

23 8

Offset

7 2 1 0

©Associativity: 2

©Cache Capacity (Indicate Unit!):

It’s 2 * 224 characters (bytes in this case) or 32 MiB.

©Memory Needed to Implement (Indicate Unit!):

It’s the cache capacity plus 2 * 216(32 − 24 + 1) bits.

©Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

31 25

Index

24 8

Offset

7 2 1 0

8

Problem 4, continued:

(b) The code below runs on the cache from the previous part. When the code below starts running the cache
is empty. Consider only accesses to the array.

int *a = 0x100000; // sizeof(int) = 4 characters
int sum, i, j;

for(j=0; j<2; j++)
for(i=0; i<1024; i++)
sum += a[i];

©What is the hit ratio for the program above?

There are 256
4 = 64 elements per line. During the first iteration the hit ratio is 63

64 , during the second it is 1 since the entire array

can be cached. The total hit ratio is 127
128 .

(c) In the problem below, only consider accesses to the arrays.

int *a = 0x10000; // sizeof(int) = 4 characters
int *b = 0x20000;
int sum, i, j;

for(j=0; j<2; j++)
for(i=0; i<1024; i++)
sum += a[i] + b[i];

©What is the minimum size of a direct mapped cache for which the program above will have a 100% hit ratio
on the second j iteration? Explain.

The total size of the two arrays is 8192 characters but if the cache were 8192 characters the index bits for the two arrays would
be the same and they could not be simultaneously cached. The only way for the two arrays to have different index bits is to make
sure the index part of the address includes bit 16 (bit 16 of 0x10000 is 1, bit 16 of 0x20000 is zero). Such a cache would be

217 = 131, 072 characters. What a difference!

©What is the minimum size of a two-way, set-associative cache for which the program above will have a 100%
hit ratio on the second j iteration?

In this case the cache can be made the combined size of the arrays, 8192 characters . Corresponding elements (say, when i=3)
have the same index but the cache can handle the two different tags.

©What is the minimum size of a three-way, set-associative cache for which the program above will have a
100% hit ratio on the second j iteration?

Again, waste. Why couldn’t it be a four-way? One third of the cache goes to waste, the size is 3 * 4096 . Note that if it were a
four way the size could be 8192 characters.

9

Problem 5: Answer each question below.

(a) In the PED below for a statically scheduled 2-way superscalar machine the xor instruction stalls in IF
even though there is an empty space in ID. (5 pts)

add s1, s2, s3 IF ID EX ME WB
or s4, s1, s5 IF ID -> EX ME WB
xor s6, s7, s8 IF -> ID EX ME WB
and s9, s10, s11 IF -> ID EX ME WB

©Why?

If xor did move in to ID then the instructions in ID would be out of order and ordinarily the decode logic is designed for in-order
instructions, so it couldn’t handle them.

©Would it be difficult or would it be impossible to modify the implementation (but keeping it statically
scheduled) so that such an instruction could move to ID? Explain.

Tedious but not impossible. Logic would have to consider case where instruction in slot zero follows instruction in slot one.

(b) In a dynamically scheduled system why should store instructions wait until they are ready to commit
before storing the data? (6 pts)

Because it might be squashed, and if it wrote before being squashed there would be no way easy to recovery the previous memory
contents.

10

(c) The same code fragment executes on 1-way, statically scheduled systems with the specified FP add
functional unit(s). For each show a pipeline execution diagram. Don’t forget to consider all structural
hazards and check carefully for dependencies. All adders take a total of four cycles to compute a result
(latency is 3). (5 pts)©One adder, A, initiation interval: 1.

Solution
add.d f0, f2, f4 IF ID A1 A2 A3 A4 WB
add.d f6, f0, f8 IF ID -------> A1 A2 A3 A4 WB
add.d f10, f0, f12 IF -------> ID A1 A2 A3 A4 WB

©One adder, A, initiation interval: 2.

Solution
add.d f0, f2, f4 IF ID A1 A1 A2 A2 WB
add.d f6, f0, f8 IF ID -------> A1 A1 A2 A2 WB
add.d f10, f0, f12 IF -------> ID -> A1 A1 A2 A2 WB

©One adder, A, initiation interval: 4.

add.d f0, f2, f4 IF ID A1 A1 A1 A1 WB
add.d f6, f0, f8 IF ID -------> A1 A1 A1 A1 WB
add.d f10, f0, f12 IF -------> ID -------> A1 A1 A1 A1 WB

©Two adders, A and B, each has initiation interval: 4.

add.d f0, f2, f4 IF ID A1 A1 A1 A1 WB
add.d f6, f0, f8 IF ID -------> A1 A1 A1 A1 WB
add.d f10, f0, f12 IF -------> ID B1 B1 B1 B1 WB

11

(d) One problem in Homework 5 was to analyze the execution of an unoptimized program to compute π.
Many people got the question below wrong, here’s your chance to get it right! (5 pts)©Should computer engineers analyze the performance of processors running unoptimized code? Explain.

They should analyze the kinds of programs that people run, which is optimized. Software is compiled without optimization only for
special circumstances such as debugging.

(e) Consider a new data type, binary coded trianary. This 32-bit data type consists of 16 radix-3 digits, each
coded with two bits, in the same way a BCD data type would consist of 8 radix-10 digits. (8 pts)©Why might 3-fingered, three-armed aliens (one hand per arm) find this data type useful?

For the same reason we’ve adopted a radix-10 number system they might adopt a radix-9 or radix-3 number system. Binary-coded
trianary would have the same advantage for them.

©Explain how the data type would be useful in accessing arrays in which the element size was a power of
three.

Suppose the size were 33 = 81 and we wanted to access element 21. Instead of multiplying by 21 * 81 we would shift the trianary
21 by six bits (three trianary digits). Either we would use a new machine instruction to convert it to binary or the array would be
25% padding.

Grading Note: A common incorrect answer was that it would be easy to increment an index. That’s easy anyway since it would take
one cycle to add 81 (incrementing the address by one element).

In a meeting next week you plan to argue that this data type should be included in the next revision of the
ISA, one of several proposed new data types. Only one will be chosen. Note: The following sentence was not
in the original exam. Three-fingered aliens are not expected to make up a large portion of your customer
base.©How will you argue that the data type should be included?

First, show that multiplying by a power of three and computing modulo 3 (or a power) would be only a single cycle with the new
data type, versus many cycles (especially for modulo now). Then argue that existing software performs enough modulo-3 arithmetic
to benefit from the extension (if recompiled).

Grading Node: Many answers involved aliens. They were fun to read.

©What will you do in the next week to prepare your argument?

Analyze existing code to find how often they perform power-of-three multiplication and modulo operations.

The following incorrect answer was common: write example programs to demonstrate the data types usefulness. It’s wrong because
the example programs don’t tell us how often the data type would be used in real programs, which is very important. A sample
program should not be necessary to demonstrate that a modulo 3 operation can be done in 1 cycle rather than 15 (it would be argued
by the design of the arithmetic unit, in this case comparing an existing division/modulo unit to a shifter or logic unit [for masking to
do the modulo]).

12

(f) In Homework 6 the performance of a linear search of an array and linked list were compared. On the
dynamically scheduled systems the search was much faster on the array. Now consider the array program
on a statically scheduled system. (8 pts)

\scoreable Would the array program perform as well compared
it the linked list program? Consider
the effect of memory latency and line size.\par

\solution{The array program would still perform better than the linked
list program, but with longer memory latency or shorter line size the
array program on the dynamically scheduled system would run
substantially faster. }

©Explain. Hint: the solution above was intentionally included.

The array program does better because a single miss brings in multiple lines. Both statically and dynamically scheduled systems enjoy
this benefit. If the line size is short or memory latency is large the dynamically scheduled system could have misses to more than one
line at once, overlapping two time consuming memory accesses. This is something the statically scheduled processor could not do.

(g) Predicated instructions can be used to avoid branches. (8 pts)©Why do predicated instructions have maximum benefit over branches that skip over one instruction (com-
pared to predicated instructions used to avoid branches that skip over more than one instruction)?

Because of the overhead needed for branches, especially in superscalar machines. Even on a one-way machine the branch overhead
is worse than sometimes wasting time by executing a predicated instruction with a false predicate. As more instructions are skipped
over by the branch, the benefit of predication drops since the branch overhead remains fixed while the waste of executing predicated
instructions increases.

©Suppose the compiler is considering whether to replace a branch that skips n instructions with predicated
instructions on a dynamically scheduled machine. How could the compiler use an estimate of prediction
accuracy, fcorrect, and resolution time, tresolve, as well as implementation details to make its decision?

The performance potential lost due to mispredicted branches is proportional to the resolution time (the time needed to determine
the branch condition). If a branch has a low prediction accuracy and a high resolution time then it will be responsible for squashing
many instructions, and so the waste of predication is a better alternative. The higher tresolve(1 − fcorrect) the more instructions
(higher n) one could predicate.

13

