
Name Solution

Computer Architecture

EE 4720

Midterm Examination

Friday, 22 March 2002, 13:40–14:30 CST

Alias Vaxinated

Problem 1 (35 pts)

Problem 2 (25 pts)

Problem 3 (40 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: In the diagram below certain wires are labeled with cycle numbers and values that
will then be present, for example, C2:9 indicates that at cycle 2 the wire will hold a 9. Other
wires are labeled just with cycle numbers, indicating that the wire is used at that cycle. Write a
program consistent with these labels. There are no stalls during the execution of the code. The code
should use five instructions. Note: The diagram in the original exam had an error that resulted in
contradictory information about the third instruction (fetched in cycle 2). The error was a C3:5
pointing to the input to the ID/EX.dst latch; that now points to the rt address input to the register
file. [35 pts]

©Write a program consistent with these labels.

©Use labels for branch targets (if any) and label the target line.

format
immed

IR

Addr
25:21

20:16

IR

IF
ID EX

WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

C2: 9

C4

C6

C5 C4

C4

C3: 12

C5:3C2: 9

C3:5

15:0

C1: 2

C0: 0x1000

C2: 0x1008

Solution shown below. Upper-case letters in instruction mnemonics indicate parts that are fixed. For example, Sw indicates
that the instruction must be some kind of a store instruction, but instead of sw it could be sh or sb. Register numbers
below £10 are based on the labels above, registers £10 and above are arbitrary. For example, £3 in the and must be £3,
but £14 could be £15.

Cycle 0 1 2 3 4 5 6 7 8 9
Bne $10,$10 TARG IF ID EX ME WB
addI $9, $9, 12 IF ID EX ME WB
Sw $11, 0($9) IF ID EX ME WB

TARG:
JALR $31, $12 IF ID EX ME WB
and $3, $14, $31 IF ID EX ME WB
Cycle 0 1 2 3 4 5 6 7 8 9

2

Problem 2: Consider the CISCy instruction below: [25 pts]

(a)
add 0x123456(r1), 8(r2), r3 # 0x123456(r1) is the destination.

©What makes it CISCy? (CISCy means characteristic of CISC ISAs.)

It’s an ALU instruction and it accesses memory, that’s CISCy. Also, because of the large immediates that can be present,
a reasonable coding would have variable-size instructions, another CISCyness.

© Ignoring instruction size, why would it be difficult to implement such an instruction on the kind of
five-stage pipeline used in class for MIPS?

Lots of reasons. For one, because execution of the instruction includes memory access before the addition (to get the first
operand) but in the five-stage pipeline memory is accessed after the execute stage.

3

Problem 2, continued:
add 0x123456(r1), 8(r2), r3 # 0x123456(r1) is the destination.

(b) How could the single-issue (not superscalar) pipeline used in class be modified so that instruc-
tions like the one above could be executed with a potential for a CPI of 1 without impacting clock
frequency? (Instructions like the one above have one destination and two sources, the destination
and first source can either use a register value or memory value specified with displacement ad-
dressing, the second source can be either a register value or an immediate.) Feel free to throw
hardware at the problem, but do not assume that the hardware is any faster than what we’ve been
using.

© Show a sketch of the pipeline, briefly explaining what should be done in each stage.

Here are the stages that would be needed. A correct solution might include a quick sketch.

IF: Same (pretend, because instructions are variable width).

ID: Same (pretend, because instructions are variable width).

EA: Compute effective addresses for destination and source operands (if needed).

M1: Load first source operand from memory (if needed).

EX: Same

M2: Store result in memory (if necessary).

WB: Store result in register file (if necessary). WB and M2 might be combined.

© Show a pipeline execution diagram for the following code on your new pipeline, assuming no
dependencies.

Solution appears below.

Solution

add 0x1234(r1), 8(r2), r3 IF ID EA M1 EX M2 WB

or r4, 7(r5), r6 IF ID EA M1 EX M2 WB

and 0x1234(r7), r8, r9 IF ID EA M1 EX M2 WB

© In the part above, why was it necessary to assume no dependencies?

First, about that word “assume.” I might assume that you had breakfast this morning, but I never assume that I had
breakfast because I know for sure whether I did or didn’t. So the question above is asking why the code might still have
dependencies alluding to the fact that there are no registers in common. The question does NOT ask “why was an example
with no dependencies chosen for the problem.”

Back to the question. The assumption was made because dependencies are still possible, through memory. The effective
address of the destination of the add instruction might be the same as the first source operand of the or instruction.
That is, the add writes the memory location that the or reads, a true dependency. (Such dependencies do not affect
statically scheduled RISC processors because load and store instructions pass through the same memory stage in order.)

4

Problem 3: Answer each question below.

(a) What’ll it be? One FP adder with an initiation interval of 2 and a latency of 3 (four cycles of
computation) or two FP adders each with an initiation interval of 4 and a latency of 3? [10 pts]

©What is the maximum number of FP adds per second with each alternative on a 1 GHz system?

In either alternative a result can be produced every two cycles, at 1 GHz thats 500 million FP adds per second.

For some reason few answered this question correctly.

© Show a code fragment in which one of the alternatives is slightly faster. For the alternative with
two adders, use label “A” for one adder and “B” for the other.
Solution.

On first alternative
add.d f0, f2, f4 IF ID A1 A1 A2 A2 WB
add.d f6, f8, f10 IF ID -> A1 A1 A2 A2 WB

On second alternative
add.d f0, f2, f4 IF ID A1 A1 A1 A1 WB
add.d f6, f8, f10 IF ID B1 B1 B1 B1 WB

© Ignoring the cost of the adders themselves, which alternative would be more costly and why?

The second alternative, since the outputs of the two adders have to be multiplexed together.

5

(b) SPEC benchmark numbers are provided in “base” and “peak” forms. [10 pts]

©How are they different?

Programs compiled for the base numbers are prepared with normal (actually, a bit on the aggressive side) optimization.
Programs compiled for the peak numbers are prepared with your-life-depends-on-it extreme optimizations.

©When should an intelligent (passed EE 4720) computer buyer use the base numbers, and when
should the buyer use the peak numbers?

Use base numbers when you plan to use purchased software or when you can’t put alot of effort in to tuning code. Use
the peak numbers when compiling your own software and have the expertise and time to super-optimize, or if purchasing
super-optimized software.

(c) Stack ISAs had burrowed their way in to our past and percolated to the fore in the past decade.
[10 pts]

©Why are programs compiled for stack ISAs smaller than the same programs compiled for other
ISAs? (Assume all compilers are of high quality.)

Many instructions in stack ISAs refer to the stack so they don’t need register operands, and so they can be small, say one
byte.

©Why would superscalar implementations of stack ISAs be less efficient (further from the ideal CPI)
than superscalar implementations of RISC and some other “conventional” ISAs? Ignore instruction
fetch problems. Consider the simple stack programs presented in class.

If the instructions in a fetch group in a statically scheduled superscalar processor (the only kind covered so far) are
dependent some will stall. The stack organization forces dependent instructions to be near each other, guaranteeing lots
of stalls in a superscalar implementation.

6

(d) At last superscalar implementations and VLIW ISAs will wage their epic [tm] battle now at the
dawn of the twenty-first century.[10 pts]

©What distinguishes a superscalar implementation from a nonsuperscalar implementation? (VLIW
isn’t part of this question).

Superscalar processors can sustain execution of more than one instruction per cycle by duplicating fetch, decode, register
read, and other parts of the system.

©Explain two ways in which VLIW machines overcome problems encountered in superscalar imple-
mentations of conventional (say RISC) ISAs?

The dependency information in VLIW bundles reduces the need for the dependency-checking hardware that is present in
superscalar processors. Limiting branch targets to bundles reduces the inefficiencies due to un-aligned fetch groups.

7

