
EE 4720 Homework 3 Solution Due: 20 March 2002

Problem 1: The exception mechanism used in the MIPS 32 ISA differs in some ways from the
SPARC V8 mechanism covered in class. See Chapter 7 in
http://www.ece.lsu.edu/ee4720/sam.pdf for the SPARC V8 exception information and
http://www.ece.lsu.edu/ee4720/mips32v3.pdf for a description of the MIPS mechanism. The
MIPS description is a bit dense, so start early and ask for help if needed.

(a) Describe how the methods used to determine which exception was raised differ in SPARC V8
and MIPS 32. Use an illegal (reserved) instruction error as an example. Shorter answers will get
more credit so concentrate on explaining how the processor identifies the exception (was it an illegal
instruction, an arithmetic overflow, etc) and avoid irrelevant details. For example, details on how
the processor switches to system mode is irrelevant.

The way the question should be answered:
The difference is that in SPARC a particular exception causes a particular handler to run, so that if the illegal

instruction handler is run it must mean that an illegal instruction exception occurred. In MIPS the handler must read a
cause register to find out which exception occurred.

Additional Information:
In both ISAs a number is associated with each kind of exception, in SPARC it is called the trap type, and in MIPS

it is referred to as an exception type; it will be called an exception code here. The question is asking how the methods
used by the handler to determine the exception code differ. In both cases the hardware generates an exception code.

In SPARC V8 the exception code is used to form a trap table entry address; a control transfer is made to this
address. At this address is the first four instructions of the handler (first eight in V9). The handler for the illegal
instruction exception “knows” an illegal instruction exception occurred because that’s the only exception that would cause
it to run. (The trap type or an illegal instruction exception is 16.)

MIPS 32 also has an exception table but it has far fewer entries. To determine which exception type caused it to
run the MIPS handlers read a cause register which contains the exception type.

(b) Where do the two ISAs store the address of the faulting instruction? Both ISAs have delayed
branches, so why does SPARC store two return addresses while MIPS gets away with one?

(SPARC registers are organized like a stack, on a procedure call a save instruction “pushes” a
fresh set of registers on the stack, and a restore instruction “pops” the registers, returning to the
previous set. The set of visible registers is called a window. This mechanism reduces the need to
save and restore registers in memory. This piece of information is needed for the previous problem.)

In SPARC V8 an exception will cause the current window pointer to advance, saving the interrupted code’s registers
and providing a fresh set of registers to the handler. The PC and NPC of the faulting instruction will be stored in registers
l1 and l2. In MIPS 32 only the PC is saved, it is saved in a special EPC register. If the faulting instruction is in a branch
delay slot the PC of the branch is saved, otherwise the PC of the faulting instruction is saved.

Suppose the instruction in a branch delay slot of a taken branch raises an exception and is to be re-executed. In
MIPS 32 control returns to the branch before the instruction so both the branch and the faulting instruction re-execute.
(Since the instruction before the faulting instruction re-executes this is not a precise exception by the definition given in
class. Since the branch does not modify registers [other than PC] or memory it can be used in the same way a precise
exception is used, and so in MIPS 32 such exceptions are called precise.) Control is returned to the branch using something
like an ordinary jump instruction, except that the processor switches back to user mode. Jumping directly to the faulting
instruction would be a challenge because after the faulting instruction is executed the branch target needs to be executed.
MIPS has no way to do these kinds of jumps and so there is no need to store NPC.

SPARC on the other hand can return directly to an instruction in the delay slot. It does so using two consecutive
control transfer instructions, something forbidden in MIPS. A jmpl instruction jumps to the saved PC, a rett (return
from trap) instruction jumps to the NPC.

http://www.ece.lsu.edu/ee4720/sam.pdf
http://www.ece.lsu.edu/ee4720/mips32v3.pdf

To summarize, SPARC saves two addresses because it needs both of them to restart an instruction in a branch delay
slot. MIPS stores only one because it never returns from exceptions to a branch in a delay slot, instead it re-executes the
branch.

Problem 2: The pipeline execution diagram below is for code running on a MIPS implementation
developed just for this homework problem! Note that the program itself is missing. The dog deleted
it. The M_ and A_ refer to parts of the multiply and add functional units with segment numbers
omitted for this problem. A WBx indicates that an instruction does not write back to avoid a WAW
hazard.

IF ID M_ M_ M_ M_ M_ M_ WB
IF ID ----> M_ M_ M_ M_ M_ M_ WB

IF ----> ID ----> A_ A_ WB
IF ----> ID M_ M_ M_ M_ M_ M_ WBx

IF ID A_ A_ WB
IF ID A_ A_ WB

(a) Write a program consistent with the diagram. Pay attention to dependencies.

Solution
mul.d f0, f2, f4 IF ID M1 M1 M1 M2 M2 M2 WB
mul.d f6, f8, f10 IF ID ----> M1 M1 M1 M2 M2 M2 WB
add.d f12, f0, f14 IF ----> ID ----> A1 A2 WB
mul.d f16, f18, f20 IF ----> ID M1 M1 M1 M1 M1 M1 WBx
add.d f16, f22, f24 IF ID A1 A2 WB
add.d f26, f28, f30 IF ID A1 A2 WB

(b) Identify the latency and initiation interval of the functional units. Fill in the segment numbers.
Multiply: latency, 5; initiation interval, 3. Add: latency, 1; initiation interval, 1.

Problem 3: In the MIPS implementation below (also shown in class) branches are resolved in
the ID stage. Resolution of a branch direction (determining whether it was taken) must wait for
register values to be retrieved and, for some branches, compared to each other. Suppose this takes
too long.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

(a) Show the modifications needed to do the equality comparison in the EX stage. The modified
hardware must use as little additional hardware as possible and, to maximize performance, should
only do an EX-stage equality comparison when necessary. Don’t forget about branch target address
handling. Hint: The modifications are easy.

The ID-stage adder that computes branch displacements is also connected to a new ID/EX latch, the output of
this new latch is connected to the PC multiplexor. The ALU in the EX stage does the register comparison for the branch.
Note that the only added hardware is the latch and the new paths. (A diagram may be added to this solution at some
point.)

(b) Write a code fragment that runs differently on the two implementations and show pipeline
execution diagrams for the code on the two implementations.
Solution

Execution on original system.
#
Cycle 0 1 2 3 4 5 6
beq $2, $3 TARG IF ID EX ME WB
add $4, $5, $6 IF ID EX ME WB
#...

TARG:
xor $6, $7 IF ID

Execution on modified system.
#
Cycle 0 1 2 3 4 5 6
beq $2, $3 TARG IF ID EX ME WB
add $4, $5, $6 IF ID EX ME WB
sub $7, $8, $9 IFx

#...
TARG:
xor $6, $7 IF ID

(c) The table below lists SPARC instructions and indicates how frequently they were used when
running TEX to prepare this homework assignment. (Many rows were omitted to save space, so the
“%exec” column will not add to 100%.) Suppose that the instruction percentages are identical for
MIPS (which means totally ignoring the cc instructions). Assume that SPARC be and be,a are
equivalent to MIPS beq, SPARC bne and bne,a are equivalent to MIPS bne, and that the other
branch instructions (they begin with a b), are equivalent to branch instructions that compare to
zero (bgez, etc.).

Suppose the clock frequency of the original design is 1.0000 GHz. Based on the data below and
making any necessary assumptions, for what clock frequency would the new design run a program
in the same amount of time as the old one? What column would you add (what additional data
do you need) to the table to make your answer more precise?

Assume that floating-point instructions are insignificant and that there are no stalls due to
memory access.

opcode #exec %exec
subcc 4659360 12.6187%
lduw 4521722 12.2459%
add 4159629 11.2653%
or 3110542 8.4241%
sethi 3066797 8.3056%
stw 1848293 5.0056%
sll 1402122 3.7973%
be 1393475 3.7739%
jmpl 1140223 3.0880%
call 1088068 2.9467%
ldub 1064918 2.8841%
bne 936493 2.5362%
stb 687981 1.8632%
srl 609402 1.6504%
save 526477 1.4258%
restore 526474 1.4258%
bne,a 453545 1.2283%
nop 433253 1.1734%
bge 429978 1.1645%
ldsb 429497 1.1632%
orcc 382947 1.0371%
and 370967 1.0047%
be,a 360057 0.9751%
sub 354847 0.9610%
ba 321970 0.8720%
bl 297715 0.8063%
andcc 270465 0.7325%
bgu 235304 0.6373%
bl,a 216074 0.5852%
sra 204610 0.5541%
ble 198154 0.5366%
xor 185137 0.5014%
bcs 182153 0.4933%
addcc 155156 0.4202%
bleu 142755 0.3866%
bg 117582 0.3184%
mulscc 88681 0.2402%

In the new design there will be a bubble added for taken branches that compare two registers. Assume the original
system has a CPI of 1 and that half the branches are taken. The percentage of branches that add a bubble is found by
adding the percentages for be, bne, bne,a, and be,a: and dividing by two: 8.5135%

2 = 4.25675%. The new CPI
will then be 1.0425675. To find the clock frequency of the new system for which it will run as fast as the old system solve:
1.0
φold

= 1.0425675
φnew

for φnew to get φnew = 1.0425675 GHz, where φold = 1 GHz.
To make the answer more precise two things are needed, the CPI on the original system and the fraction of times a

branch is taken.

