EE 4720 Homework 3 solution Due: 20 March 2002

Problem 1: The exception mechanism used in the MIPS 32 ISA differs in some ways from the
SPARC V8 mechanism covered in class. See Chapter 7 in

MIPS description is a bit dense, so start early and ask for help if needed.

(a) Describe how the methods used to determine which exception was raised differ in SPARC V8
and MIPS 32. Use an illegal (reserved) instruction error as an example. Shorter answers will get
more credit so concentrate on explaining how the processor identifies the exception (was it an illegal
instruction, an arithmetic overflow, etc) and avoid irrelevant details. For example, details on how
the processor switches to system mode is irrelevant.

The Way the qUQSUOﬂ should be answered:

The difference is that in SPARC a p&YUQU\M QXQQpUOﬂ Causes a pQYUQU\&Y handler to run, so that it the '\\\Qg&\
instruction handler is run it must mean that an '\\\ng instruction QXQQPUOY\ occurred. In MIPS the handler must read a
cause YQg'\SIQY £o ind out which QXQQpUOﬁ oceurred.

Additional Information:

In both ISAS a number is associated with each kind of QXQQPUOT\, in SPARC it is called the Uilp typ@, and in MIPS
1T is referred 1o as an QXQQpUOﬁ WPQ', it will be called an QXQQPUOT\ code here. The QUQSUOY\ 18 &S\(\ﬂg now the methods
used b\/ the handler to determine the QXQQPUOT\ code differ. In both cases the hardware gQﬂQYQtQS an QXQQPUOY\ code.

In SPARC V8 the QXQQpUOﬂ code is used to form 4 U&P Table entry address; a control transter is made to this
address. At this address is the Tirst four instructions of the handler (frst eight in V9). The handler for tha illegal
instruction QXQpr\Oﬂ “Knows" an \\\Qg&\ instruction QXQpr\Oﬂ occurred because that's the ONy QXQQPUOH that would cause
It to run. (The trap type or an illegal instruction exception is 16.)

MIPS 32 also has an QXQQPUOH Table but it has tar fewer entries. To determine which QXQQPUOY\ tpr caused it 1o
run the MIPS handlers read a cause YQg'\StQY whieh containg the QXQQPUOT\ WPQ.

() Where do the two ISAs store the address of the faulting instruction? Both ISAs have delayed
branches, so why does SPARC store two return addresses while MIPS gets away with one?

(SPARC registers are organized like a stack, on a procedure call a save instruction “pushes” a
fresh set of registers on the stack, and a restore instruction “pops” the registers, returning to the
previous set. The set of visible registers is called a window. This mechanism reduces the need to
save and restore registers in memory. This piece of information is needed for the previous problem.)

In SPARC V8 an QXQQPUOT\ Will cause the current window po‘mt@r 10 advance, sa\/mg the 'mt@rrupt@d code's YQg\SIQYS
and pm\/'\dmg g Tresh set of YQg\StQYS 1o the handler. The PC and NPC of the Tau\t‘mg instruction will be stored in YQg'\StQYS
11and 12. In MIPS 32 Oﬂ\y the PCis saved, it is saved in & SPQQ'\&\ EPC register. If the TQU\UT\% instruetion is in a branenh
delay slot the PC of the branch is saved, otherwise the PC of the Taulting instruction is saved.

SUPPOSQ the instruetion in 4 braneh GQ\&y slot of & taken branch raises an QXQQPUOH and 18 To be re-executed. In
MIPS 32 control returns to the branch before the ingtruction so both the branch and the TQU\UY\% instruction re-executa.
(S\T\QQ the instruction before the TQU\UT\g instruction re-executes this is not o pf@Q‘SQ QXQQPUO[\ by the definition g\VQﬂ in
class. Since the braneh does not mod‘\fy YQg'\S'EQYS XOU\QT than PCK or memory it can be used in the same way a p\”QQ\SQ
QXQQPUOT\ is used, and 80 in MIPS 32 such @XQQPUOT\S are called pYQQ'\SQ.) control is raturned £o the braneh US'\T\g som@,th‘mg
like an ordinary jump instruetion, exeept that the processor switenes back to user mode. Jumping directly to the faulting
instruetion would be 4 Qh&\\@ﬂg@ Dacause after the T&U\Uﬁg instruction is executed the branch target needs to e executed.
MIPS has no Way 10 40 these Kinds of }umps and so there is no need to store NPC.

SPARC on the other hand can return G'\YQQUy 10 an instruction in the GQ\&y 8loT. 1t does s0 US\ﬂg TWo consecutive
control transfer instructions, sometmng forbidden in MIPS. A jmpl instruction 3umps 10 the saved PC, a rett (YQIUYT\
from U&p) instruction }umps 1o the NPC.

http://www.ece.lsu.edu/ee4720/sam.pdf
http://www.ece.lsu.edu/ee4720/mips32v3.pdf

To summarize, SPARC saves two addresses because it needs both of them o restart an instruction in a branen delay
8lot. MIPS stores only one hecause it never returns from axeeptions 1o a branen in & delay 8lot, instead it re-executes the
praneh.

Problem 2: The pipeline execution diagram below is for code running on a MIPS implementation
developed just for this homework problem! Note that the program itself is missing. The dog deleted
it. The M_ and A_ refer to parts of the multiply and add functional units with segment numbers
omitted for this problem. A WBx indicates that an instruction does not write back to avoid a WAW
hazard.

IF ID M_ M_ M_ M_ M_ M_ WB

IF ID --—-> M_ M_ M_ M_ M_ M_ WB
IF -——--> ID ——--> A_ A_ WB
IF ———-> ID M_ M_ M_ M_ M_ M_ WBx

IF ID A_ A_ WB
IF ID A_ A_ WB

(a) Write a program consistent with the diagram. Pay attention to dependencies.

Solution

mul.d fO, f2, f4 IF ID M1 M1 M1 M2 M2 M2 WB

mul.d f6, £8, f10 IF ID ———--> M1 M1 M1 M2 M2 M2 WB

add.d f12, f0, f14 IF -——-> ID ----> A1 A2 WB

mul.d f16, £18, £20 IF -——> ID M1 M1 M1 M1 M1 M1 WBx
add.d f16, f22, f24 IF ID A1 A2 WB

add.d f26, £28, £30 IF ID A1 A2 WB

(b) Identify the latency and initiation interval of the functional units. Fill in the segment numbers.
MU\Up\yZ \MQT\Qy, 5, initiation interval, 3. Add: \MQT\Qy, 1; initiation interval, 1.

Problem 3: In the MIPS implementation below (also shown in class) branches are resolved in
the ID stage. Resolution of a branch direction (determining whether it was taken) must wait for
register values to be retrieved and, for some branches, compared to each other. Suppose this takes

too long.
%ll ID EX MEM WB

E—
FPC lNPC ALU

25:21 1 —
Addr Data - rsv | Mem

IF
—
+4 20:16 Addr Data] rtv 7: ALU Port
7: A Addr
A9 pin T | [fPata Data HMD
™ E hn oOut
PC , HrE—°tl
ormat

Addr
Mem (Decode
Port { gest. reg J dst dst dst
gatta IR IR IR IR
u I — I —

(a) Show the modifications needed to do the equality comparison in the EX stage. The modified
hardware must use as little additional hardware as possible and, to maximize performance, should
only do an EX-stage equality comparison when necessary. Don’t forget about branch target address
handling. Hint: The modifications are easy.

The ID—SIQgQ addaer that eomputes pranch d'\sp\aeemems is 2180 connected to 2 new ID/EX lateh, the output of
This new lateh is connected to the PC mu\t'\p\exor. The ALU in the EX SIQgQ does the TQg\SiQY Qompar'\son for the branch.
Note that the on\y added hardware is the lateh and the new psm\s. (A d'\agmm may be added to this solution at some
point.)
(b) Write a code fragment that runs differently on the two implementations and show pipeline
execution diagrams for the code on the two implementations.

Solution

Execution on original system.

#

Cycle 0 1 2 3 4 5 6
beq $2, $3 TARG IF ID EX ME WB

add $4, $5, $6 IF ID EX ME WB
#...
TARG:

xor $6, $7 IF ID

Execution on modified system.

#

Cycle 0 1 2 3 4 5 6
beq $2, $3 TARG IF ID EX ME WB

add $4, $5, $6 IF ID EX ME WB

sub $7, $8, $9 IFx

TARG:
xor $6, $7 IF ID

(¢) The table below lists SPARC instructions and indicates how frequently they were used when
running TEX to prepare this homework assignment. (Many rows were omitted to save space, so the
“Yoexec” column will not add to 100%.) Suppose that the instruction percentages are identical for
MIPS (which means totally ignoring the cc instructions). Assume that SPARC be and be,a are
equivalent to MIPS beq, SPARC bne and bne,a are equivalent to MIPS bne, and that the other
branch instructions (they begin with a b), are equivalent to branch instructions that compare to
zero (bgez, etc.).

Suppose the clock frequency of the original design is 1.0000 GHz. Based on the data below and
making any necessary assumptions, for what clock frequency would the new design run a program
in the same amount of time as the old one? What column would you add (what additional data
do you need) to the table to make your answer more precise?

Assume that floating-point instructions are insignificant and that there are no stalls due to
memory access.

opcode #exec hexec

subcc 4659360 12.6187Y%
1duw 4521722 12.2459Y,
add 4159629 11.2653Y%
or 3110542 8.42417%,
sethi 3066797 8.3056%
stw 1848293 5.0056Y%
sll 1402122 3.7973%
be 1393475 3.7739%
jmpl 1140223 3.0880%
call 1088068 2.9467Y
1dub 1064918 2.8841Y%
bne 036493 2.5362%
stb 687981 1.8632%
srl 609402 1.65047%
save 526477 1.4258%
restore 526474 1.4258Y%
bne,a 453545 1.2283%
nop 433253 1.1734%
bge 429978 1.1645%
1dsb 429497 1.1632%
orcc 382947 1.0371%
and 370967 1.0047%
be,a 360057 0.9751Y%
sub 354847 0.9610Y%
ba 321970 0.8720%
bl 297715 0.8063Y%
andcc 270465 0.7325Y%
bgu 235304 0.6373Y%
bl,a 216074 0.5852Y%
sra 204610 0.55419
ble 198154 0.5366Y%
xor 185137 0.50149%
bcs 182153 0.4933Y%
addcc 155156 0.4202%
bleu 142755 0.3866Y%
bg 117582 0.3184Y
mulscc 88681 0.2402%

In the new design there will be & bubble added for taken branches that compare two registers. Assume the original
system has & CP1 of 1 and that half the branches are taken. The percentage of branches that add a bubble is found by
adding the percentages for be, bne, bne, a, and be,a: and dividing by two: 3:5135% — 4 25675%. The new CPI
will then be 1.0425675. To find the clock frequency of the new system for whieh it will run as fast as the old system solve:
L= “{gj% TOr Prew 10§01 Prew = 1.0425675 GHz, Where ¢oiq = 1 GHz.

To make the answer more precise two things are needed, the CP1 on the original system and the fraction of times &
braneh is taken.

