
02-1 02-1Quantitative Computer Design

Design guided by measured performance.

Covered:

• Design Principles (1.6)

• Components of CPU Performance (Quantitative Principles) (1.6)

• Benchmarks (1.5)

(Numbers refer to book sections.)

02-1 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-1

02-2 02-2Principles of Computer Design

Principles computer designers apply widely.

• Make the common case fast.
Obviously.

(Not covered.)

• Amdahl’s Law: Don’t make common case too fast.
As speed of one part increases. . .
. . .impact on total performance drops.

(Not covered.)

• Locality of Reference.

Temporal: It might happen again soon.
Spatial: It might happen to your neighbors soon too.

02-2 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-2

02-3 02-3Locality

The first two principles are “common sense”.

However, locality is a characteristic of executing programs . . .

. . . which has held and is expected to continue to hold.

Because many designs work only when locality is present . . .

. . . if it all of a sudden programs did not exhibit locality . . .

. . . computers would run them many, many times slower!

Locality usually applied to memory addresses issued by processor.

Temporal: there’s a good chance that an address used will be used again soon.

Spatial: once an address is used there’s a good chance a nearby address will be used.

For examples, analyze execution of almost any program.

02-3 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-3

02-4 02-4Components of CPU Performance and Performance Equation

CPU Performance Decomposed into Three Components:

• Clock Frequency (φ)
Determined by technology and influenced by organization.

• Clocks per Instruction (CPI)
Determined by organization and instruction mix.

• Instruction Count (IC)
Determined by program and ISA.

These combined to form CPU Performance Equation

tT =
1
φ
× CPI × IC

,

where tT denotes the execution time.

02-4 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-4

02-5 02-5Component of CPU Performance: Instruction Count

Given a program there are two ways instructions could be tallied:

Static Instruction Count:

The number of instructions making up the program.

Dynamic Instruction Count (IC):

The number of instructions executed in a run of the program.

For estimating performance, dynamic instruction count is used.

02-5 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-5

02-6 02-6Instruction Counts

Example, C program that computes a =
∑9

i=0 i.

(For simplicity, treat each line as an instruction.)

IC Line Code
1 1 a = 0;
1 2 for(i = 0;
11 3 i < 10;
10 4 i++)
10 5 a = a + i;

Static count: 5 (number of lines).

Dynamic count: 33.

02-6 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-6

02-7 02-7Instruction Counts

Example, assembler program that computes a =
∑9

i=0 i.

Written in Simplescalar assembler.

Loop executes slightly differently than previous one.

IC
1 move r5, r0 ! r0 is always zero.
1 move r3, r0

L23: ! Branch label.
10 addu r5, r5, r3 ! Add unsigned.
10 addu r3, r3, 1
10 slt r2, r3, 10 ! r2 = r3 < 10
10 bne r2, r0, L23 ! Branch to L23 if r2 not equal 0.

Static count: 6 (number of instructions).

Dynamic count: 42.

02-7 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-7

02-8 02-8Component of CPU Performance: Clock Frequency

CPUs implemented using synchronous clocked logic.

Typical Clock Cycle

• When clock switches from low to high work starts.

• While clock is high work proceeds.

• When clock goes from high to low work should be complete.

Clock frequency determined by critical path.

Critical Path:

Logic doing most time consuming work (in a cycle).

If clock frequency is too high work will not be completed . . .

. . . and so system will not perform properly.

For high clock frequencies, keep critical paths short.

02-8 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-8

02-9 02-9Component of CPU Performance: CPI

Cycles (clocks) per Instruction (CPI)

Oversimplified definition: CPI:

Number of cycles needed to execute an instruction.

Better definition: CPI:

Number of cycles to execute some code divided by number of instructions.

Difference:

Interested in rate at which instructions executed in program . . .

. . . not time time for any one instruction.

02-9 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-9

02-10 02-10CPI

Possible Execution (Once upon a time.)

In program order . . .

. . . one at a time.

Instr. 1 Instr. 2 Instr. 3

Time/cycles:

Time/mms:

0 1 2 3 4 5 6 7 8 9 10 11

0 80 160

Instr. 500,000

1,999,996

39,999,920

Execution time: IC × CPI. × clock period.

Here (and only here) CPI is number of cycles for each instruction.

02-10 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-10

02-11 02-11Execution: Pipelined, In Order

To Run Faster: Overlap Instructions (Pipelined Execution)

Result must be same as one-at-a-time execution . . .

. . . not too difficult to achieve.

Instr. 1

Instr. 2

Instr. 3

Time/cycles:

Time/mms:

0 1 2 3 4 5 6 7 8 9 10 11

0 20 40

Instr. 500,000

750,000

3,750,000

Instr. 4

Instr. 5

Instr. 6

Instr. 7

Execution time at best: IC × clock period . . .

. . . assuming 1 cycle to start each instruction and . . .

. . . instruction can start each cycle. (Slower in illustration.)

02-11 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-11

02-12 02-12Execution: Pipelined, Out of Order

To Run Even Faster: Overlap Instructions and Start Out of Order

Sometimes skip an instruction and execute it later.

Instr. 1

Instr. 2

Instr. 3

Time/cycles:

Time/mms:

0 1 2 3 4 5 6 7 8 9 10 11

0 4 8

Instr. 500,000

500,000

500,000

Instr. 4

Instr. 5

Instr. 6

Instr. 7

Instr. 8

Instr. 9

Execution time at best: IC × clock period . . .

. . . assuming 1 cycle to start each instruction . . .

. . . instruction can start each cycle.

Illustrated CPI is 1.

02-12 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-12

02-13 02-13Execution: Pipelined, Out of Order, Superscalar

To Run Fastest1: Overlap, Out-of-Order, Start n per Tick (n-Way Superscalar).

Requires about n times as much hardware.

Instr. 1

Instr. 2

Instr. 3

Time/cycles:

Time/mms:

0 1 2 3 4 5 6 7 8 9 10 11

0 .008 .016

Instr. 500,000

250,000

500

Instr. 4

Instr. 5

Instr. 6

Instr. 7

Instr. 8

Instr. 9

Instr. 12

Instr. 14

Instr. 15

Instr. 13

Instr. 10

Instr. 16

Instr. 11

Instr. 17

Instr. 18

Execution time at best: 1
n× IC × clock period . . .

. . . assuming 1 cycle to start each instruction instruction can start each cycle.

Illustrated CPI is 1
n .

1 Using a conventional serial instruction set architecture.

02-13 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-13

02-14 02-14Interaction of Execution Time Components

Tradeoffs between Clock Frequency, CPI, and Instruction Count

Increasing Clock Frequency . . .

. . . reduces the work that can be done in a clock cycle . . .

. . . forcing designers to choose higher-CPI designs.

Reducing IC (by adding “powerful” instructions to ISA) . . .

. . . may force implementors to increase CPI or lower clock frequency.

Balancing these is an important skill in computer design.

Since the ISA is usually fixed, IC is less of a factor.

02-14 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-14

02-15 02-15Example: Trading off Execution Time Components

Company X is considering two clock frequencies for its next processor, 500 MHz or
400 MHz. A 500 MHz implementation would execute instructions at 1.7 CPI, the 400
MHz part at 1.1 CPI. Which would be faster?.

Find time to execute 1 instruction.

500 MHz execution time: 1
500×106 × 1.7 × 1 = 3.4 µs

400 MHz execution time: 1
400×106 × 1.1 × 1 = 2.75 µs.

The lower clock rate would nevertheless take less time.

Perhaps because at 500 MHz too much work had to be split into multiple cycles.

02-15 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-15

02-16 02-16Instruction Mix and Execution Time

An ISA contains many instructions . . .

. . . execution characteristics differ.

E.g., division takes longer than add.

Instruction placement also affects execution time.

To account for this instruction count can be partitioned.

For example, IC = IC1 + IC2 + IC3,

where ICx is the number of instructions of class x in the execution of some program.

02-16 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-16

02-17 02-17

Choosing Instruction Classes

Option: a class for every instruction in the ISA.

This would be tedious to work with.

Option: classes for instructions sharing execution characteristics.

Example: a class for all memory instructions, class for all integer instructions, etc.

Since instructions in class similar, no need to consider separately.

Similarly, CPI can be partitioned by class.

The CPU Performance Equation can then be written:

tT =
1
φ

∑
i

ICi × CPIi.

02-17 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-17

02-18 02-18Design Tradeoffs Using Instruction Classes

Change may affect one class but not another.

CPU Performance Equation,
1
φ

∑
i

ICi × CPIi, shows impact.

Impact of changes of different instructions can be estimated.

Note: unlike case without instruction classes . . .

. . . impact computed depends on program being analyzed.

E.g., you’re out of luck . . .

. . . if IC1 = 0 and change reduced only CPI1.

(The classless CPI is really an average for a typical program.)

Instruction counts by class can guide designer’s effort:

First consider instructions in class i, where ICi ≥ ICx.

02-18 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-18

02-19 02-19

Design changes can even influence IC (without changing ISA):

Suppose CPI1 was reduced to a really low value.

Then programmer might re-write code so IC1 À 0.

Result might be faster execution with modified program.

But performance benefit must be high enough to justify re-coding.

02-19 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-19

02-20 02-20IC v. CPI Tradeoffs

Assumption

IC is based on output of a good compiler.

Compiler is tuned for a particular implementation.

Two Cases

1. Same ISA, different implementation.

2. Different ISA, (and of course) different implementation.

02-20 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-20

02-21 02-21IC v. CPI Tradeoffs, continued.

Case 1: Same ISA, different implementation.

Newer implementation may have lower CPI on existing code . . .

. . . but even better performance attainable by recompiling . . .

. . . which may increase CPI.

Compiler writer selects instructions based on performance of implementation.

02-21 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-21

02-22 02-22

Consider two implementations:

Implementation A: add CPI 1 cycle, mul CPI 5 cycles.

Implementation B: add CPI 1 cycle, mul CPI 2 cycles.

! Call original value of r1, x. Code computes 6x.

! Code For Implementation A
add r1, r1, r1 ! r1 = 2x
add r2, r1, r1 ! r2 = 4x
add r1, r1, r2 ! r1 = 6x

! Code For Implementation B.
mul r1, r1, 6 ! r1 = 6x.

Implementation A: IC = 3, CPI = 1 (Computing CPI will be covered later.)

Implementation B: IC = 1, CPI = 2.

Implementation B is faster despite higher CPI.

Code compiled for B will run slowly on A.

02-22 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-22

02-23 02-23IC v. CPI Tradeoffs, continued.

Case 2: Different ISA, (and of course) different implementation.

Major tradeoffs in complexity and speed.

Consider two implementations:

Implementation A: CPI: load, 2; add and store, 1.

Implementation B: CPI: add (doing load and store), 4.

! Code for implementation A.
load r1, [r2] ! Load r1 with data at address in r2.
add r3, r1, r4 ! r3 = r1 + r4
store [r2], r3 ! Store r3 at address in r2.

! Code for implementation B.
add [r2], r4, [r2]

Execution time same.

Implementation A: IC = 3, CPI = 4
3 .

Implementation B: IC = 1, CPI = 4.

02-23 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-23

02-24 02-24Benchmarks

Benchmark:

Program used to evaluate performance.

Uses

• Guide computer design.

• Guide purchasing decisions.

• Marketing tool.

Guiding Computer Design

Measure overall performance.

Determine characteristics of programs.

E.g., frequency of floating-point operations.

Determine effect of design options.

02-24 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-24

02-25 02-25Choosing Benchmark Programs

Important: Choice of programs for evaluation.

Optimal but unrealistic:

The exact set of programs customer will run.

Problem: computers used for different applications.

Therefore, must model typical users’ workload.

02-25 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-25

02-26 02-26

Options:

Real Programs:

Programs chosen using surveys, for example.

+ Measured performance improvements apply to customer.

– Large programs hard to run on simulator. (Before system built.)

Kernels:

Use part of program responsible for most execution time.

+ Easier to study.

– Not all program have small kernels.

Toy Benchmarks:

Program performs simplified version of common task.

+ Easier to study.

– May not be realistic.

02-26 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-26

02-27 02-27

Synthetic Benchmarks:

Program “looks like” typical program, but does nothing useful.

+ Easier to study.

– May not be realistic.

Commonly Used Option

Overall performance: real programs

Test specific features: synthetic benchmarks.

02-27 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-27

02-28 02-28Benchmark Suites

Benchmark Suite:

A named set of programs used to evaluate a system.

Typically:

• Developed and managed by a publication or non-profit organization.
E.g., Standard Performance Evaluation Corp., PC Magazine.

• Tests clearly delineated aspects of system.
E.g., CPU, graphics, I/O, application.

• Specifies a set of programs and inputs for those programs.

• Specifies reporting requirements for results.

02-28 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-28

02-29 02-29

What Suites Might Measure

• Application Performance
E.g., productivity (office) applications, database programs.
Usually tests entire system.

• CPU and Memory Performance
Ignores effect of I/O.

• Graphics Performance

02-29 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-29

02-30 02-30

Example, SPEC CPU2000 Suites

Respected measure of CPU performance.

Managed by Standard Performance Evaluation Corporation,. . .

. . .a non-profit organization funded by computer companies.

Measures CPU and memory performance on integer and FP code.

Uses common Unix programs such as perl, gcc, gzip.

Requires that results on each program be reported.

Programs compiled with publicly available compilers and libraries.

Programs compiled with and without expert tuning.

02-30 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-30

02-31 02-31

SPEC CPU2000 Suites and Measures

Suite of integer programs run to determine:

• SPECint2000, execution time of tuned code.

• SPECint base2000, execution time of untuned code.

• SPECint rate2000, throughput of tuned code.

• SPECint rate base2000, throughput of untuned code.

Suite of floating programs run to determine:

• SPECfp2000, execution time of tuned code.

• SPECfp base2000, execution time of untuned code.

• SPECfp rate2000, throughput of tuned code.

• SPECfp rate rate2000, throughput of untuned code.

02-31 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-31

02-32 02-32

Other Examples

(Fall 2001: This list is out of date.)

BAPCO Suites, measure productivity app. performance on Windows 95.

TPC, measure “transaction processing” system performance.

WinMARK, graphics performance.

02-32 EE 4720 Lecture Transparency. Formatted 11:03, 29 August 2001 from lsli02. 02-32

