
EE 4720 Homework 1 Solution Due: 10 October 2001

Problem 1: In DLX the three instructions below, though they do very different things, are of the
same type (format).

bnez r2, SKIP
lw r1, 1(r2)
addi r1, r2, #1
SKIP:

Because of their similarity their implementations in the diagram below shares a lot of hardware.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

(a) Show how these DLX instructions are coded.
DLX:
bnez r2, SKIP

opcode

?

0 5

rs1→r2

2

6 10

rd

0

11 15

simm16

2

16 31

lw r1, 1(r2)

opcode

?

0 5

rs1→r2

2

6 10

rd→r1

1

11 15

simm16

1

16 31

addi r1, r2, #1

opcode

1

0 5

rs1→r2

2

6 10

rd→r1

1

11 15

simm16

1

16 31



(b) Find corresponding instructions in the SPARC V9 ISA. (See the SPARC Architecture Manual
V9, http://www.ece.lsu.edu/ee4720/samv9.pdf) (The DLX branch instruction will have to be
replaced by two instructions, one to set the condition code registers.)
! In this solution the DLX branch is replaced by a single instruction.
brnz %g1, SKIP
ldsw [%g2+1],%g1
add %g2, 1, %g1

! In this solution the DLX branch is replaced by two instructions.
addcc %g1, 0, %g0
bne SKIP
ldsw [%g2+1],%g1
add %g2, 1, %g1

(c) Show the coding of the SPARC V9 branch, load, and add immediate instructions (but not the
condition code setting instruction).

brnz g1, SKIP

op

0

31 30

a

0

29 29

0

0

28 28

rcond

5

27 25

op2

3

24 22

dh

0

21 20

p

0

19 19

rs1

2

18 14

displo

2

13 0

bne SKIP

op

0

31 30

a

0

29 29

cond

9

28 25

op2

2

24 22

disp22

2

21 0

ldsw [g2+1],g1

op

3

31 30

rd

1

29 25

op3

8

24 19

rs1

2

18 14

i

1

13 13

simm13

1

12 0

add g2, 1, g1

op

2

31 30

rd

1

29 25

op3

0

24 19

rs1

2

18 14

i

1

13 13

simm13

1

12 0

(d) Do these codings allow the same degree of hardware sharing?
Because the DLX codings are identical an implementation could use the same datapath for computing the immediate

add, load effective address, and branch target. The SPARC V9 add and lduw codings are identical and so hardware
can be shared but the placement of the displacement is different for the branch instruction (either one) and so additional
hardware would be needed to select the immediate (or displacement) bits corresponding to the instruction.

http://www.ece.lsu.edu/ee4720/samv9.pdf


Problem 2: Write a DLX assembly language program that determines the length of the longest
run of consecutive elements in an array of words. For example, in array {1, 7, 7, 1, 5, 5, 5, 7, 7} the
longest run is three: the three 5’s (the four 7’s are not consecutive). The comments below show
how registers are initialized and where to place the longest run length.

! r10 Beginning of array (of words).
! r11 Number of elements.
! r1 At finish, should contain length of the longest run.

! r10 Beginning of array
! r11 Number of elements
! r1 At finish, should contain length of longest run.

! r1 Longest run encountered.
! r2 Size of this run so far.
! r3 Last element.

add r1, r0, r0
add r2, r0, r0

lw r5, 0(r10)
addi r3, r5, #1

LOOP:
beqz r11, DONE
lw r5, 0(r10)
addi r10, r10, #4
subi r11, r11, #1
seq r6, r5, r3
beqz r6, NEW_RUN
add r2, r2, #1
j LOOP

NEW_RUN:
add r7, r2, r0
addi r2, r0, #1
sgt r6, r7, r1
add r3, r5, r0
beqz r6, LOOP
add r1, r7, r0
j LOOP

Problem 3: Small integers can be stored in a packed array to reduce the amount of storage
required; the array can be unpacked into an ordinary array when the data is needed. Write a DLX
assembly language program to unpack an array containing n b-bit integers stored as follows. The
low b bits (bits 0 to b − 1) of the first word of the packed array contain the first integer, bits b to
2b − 1 contain the next, and so on. When the end of the word is reached integers continue on the
second word, etc. Size b is not necessarily a factor of n and so an integer might span two words.

The diagram below shows how the first 6 integers i0, i1, . . . , i5 are stored for b = 12 bits and
n ≥ 6.



i2

low part

31 24

i1

23 12

i0

11 0

i5

low part

31 28

i4

27 16

i3

15 4

i2

high part

3 0

Write DLX assembly language code to unpack such an array into an array of signed words.
The packed array consists of n b-bit signed numbers, with b ∈ [1, 32]. Initial values of registers are
given below.

! Initial values
! r10: Address of start of packed array.
! r11: Number of elements (n).
! r12: Size of each element, in bits (b).
! r14: Address of start of unpacked array.

! Initial values
! r10: Address of start of packed array.
! r11: Number of elements (n).
! r12: Size of each element, in bits (b).
! r14: Address of start of unpacked array.

! r1: Current word.
! r2: Mask
! r3: Unpacked item
! r4: Bits remaining in current word.
! r8, r9: Miscellaneous
! r5: 32 - size of each element.

add r4, r0, r0
add r8, r12, r0
addi r5, r0, 32
sub r5, r5, r12
addi r2, r0, #1
sll r2, r2, r12
subi r2, r2, #1

LOAD_MAYBE:
bnez r4, LOWPART
lw r1, 0(r10)
addi r10, r10, #4
addi r4, r0, #32

LOWPART:
and r3, r1, r2
srl r1, r1, r12
sub r4, r4, r12

slt r9, r4, r0



bnez r9, SPAN
j STORE

SPAN:
lw r1, 0(r10)
addi r10, r10, #4
add r8, r12, r4
sll r9, r1, r8
or r3, r3, r9
and r3, r3, r2
addi r4, r4, #32
! Fall through to store

STORE:
sll r3, r3, r5
sra r3, r3, r5 ! Sign extend
sw 0(r14), r3
addi r14, r14, #4
subi r11, r11, #1
bnez r11, LOAD_MAYBE

DONE:


