
EE 4720 Homework 2 Due: 21 February 2001

Problem 1: Translate the following C program to DLX assembly, use the minimum number
of comparison instructions. Pay attention to data type sizes. The line labels are provided for
convenience, please use them in the assembly language version.

extern int r1, r2, r3, r10, r11;
extern int *r20, *r21;
/* For DLX: sizeof(int) = sizeof(int*) = 4 */
/* For IA-64: sizeof(int) = sizeof(int*) = 8 */

if(r1 < 3)
{
LINE1:

if(r2 == r3)
{
LINE11: r10 = *r20++;
}

else
{
LINE10: r10 = 4720;
}

LINE1E:
r11 = r11 + r10;

}
else
{
LINE0:

r21 = r21 + 7;
if(r2 == r3)

{
LINE01: r10 = *r21++;
}

else
{
LINE00: r10 = 7700;
}

}
DONE:

Problem 2: Translate the C program from the previous problem into IA-64 assembly using pred-
icated instructions. (You’re not expected to know it at this point.) IA-64 is described in the IA-64
Application Developer’s Architecture Guide, available at
http://developer.intel.com/design/ia64/downloads/adag.pdf.

For this problem one can ignore alot of IA-64’s features. Here is what you will need to know:
IA-64 has 64 1-bit predicate registers, p0 to p63, which are written by cmp (compare) and other
instructions. Predicates can be specified for most instructions, including cmp. See 11.2.2 for a
description of how to use IA-64 predicates.

To solve the problem look at the following sections: 11.2.2 (predicate description) and Chapter
7 (for instruction descriptions). The following instructions will be needed: cmp (compare, look at
the normal [none] and unc comparison types), ld1, ld2,. . . (loads), and add.

To save time, ignore instruction stops (;;) and consider only normal loads. (Post-increment
like loads are considered normal here.)

• Use general-purpose registers r0-r31 and predicate registers p1-p63 in your solution. (There
are 128 general-purpose registers, but those above r31 must be allocated.)

• Do not use branches (or any other CTI).

• Ignore stops. (These will be covered later.)

• Use the minimum number of cmp instructions. (Three is possible.)

• Do not assign a value to a register unless it’s needed.

• Make use of post-increment loads.

• Pay attention to data type sizes.

http://developer.intel.com/design/ia64/downloads/adag.pdf

Problem 3: Show a pipeline execution diagram of the code below on each implementation. (There
should be a total of two diagrams.) The branch is always taken, show the diagram until the second
execution of the first instruction reaches WB. If a bypass path is not shown, it’s not there.
LOOP:
addi r2, r2, #4
lw r1, 0(r2)
add r3, r3, r1
slt r4, r2, r5
beqz r4, LOOP
xor r5, r4, r1

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

RD RD RD
Decode

RD

Problem 4: For each implementation from the problem above, determine the CPI for a large
number of iterations.

Problem 5: For the second pipeline execution diagram above, show the location(s) of the latest
value of r1 and r2 at the beginning of each cycle on the diagram below. For r1 box the appropriate
cycle numbers and draw an arrow to the locations. For r2 circle the cycle numbers and draw an
arrow to the locations. In the diagram below this has been completed for cycles zero and two,
assuming addi is in IF at cycle zero. The arrows should only point to register values that are valid
at the indicated cycles. Note: A valid value can be in more than one location at once.

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

RD RD RD
Decode

RD

0,

2,

