
EE 4720 Homework 1 Due: 7 February 2001

Problem 1: Write a DLX program to reverse a C-style string, as described below. The address of
the start of the string is in r1. The string consists of a sequence of characters and is terminated by
a zero (NULL). The string length is not stored anywhere, it can only be determined by looking for
the NULL. Put the reversed string in memory starting at the address in r2. Be sure to terminate
the reversed string.
! r1 holds address of first character of original string.
! r2 holds address of first character of reversed string.
! Strings end with a zero (NULL) character.

Problem 2: The DLX program below copies a block of memory starting at address r1 to the
address r3, the block is of length r2 bytes. The problem is it won’t always work. Explain why not
and fix the problem without unnecessarily increasing the number of loop iterations. (The program
will be slower, except for special cases.) Be sure to modify the program, not a specification of what
the program is supposed to do.
! r1 Start address of data to copy.
! r2 Number of bytes to copy.
! r3 Start address of place to copy data to.

LOOP:
slti r4, r2, #4
bnez r4, LOOP2
lw r5, 0(r1)
sw 0(r3), r5
addi r1, r1, #4
addi r3, r3, #4
subi r2, r2, #4
j LOOP

LOOP2:
beqz r2, EXIT
lb r5, 0(r1)
sb 0(r3), r5
addi r1, r1, #1
addi r3, r3, #1
subi r2, r2, #1
j LOOP2

EXIT:

Problem 3: Implement the following procedure in DLX assembly language. The procedure is
given two ways, both do the same thing, look at either one. The return address is stored in r31.
The C short int data type here is two bytes (as it is on many real systems). The registers used
for the procedure arguments are specified by the C variable names.
void sum_arrays(short int *s_r1, float *f_r2, double *d_r3, int size_r4)
{
while(size_r4--) *d_r3++ = *s_r1++ + *f_r2++;
}

void sum_arrays(short int *s_r1, float *f_r2, double *d_r3, int size_r4)
{
int i;
for(i=0; i<size_r4; i++) d_r3[i] = s_r1[i] + f_r2[i];
}

Problem 4: The code below contains two sets of add instructions, one in DLX assembler, the
other in Compaq (née DEC) Alpha assembler. The first instruction in each group adds two integer
registers, the second instruction in each group adds an integer to an immediate, the last adds
two floating point registers. Information on the Alpha architecture can be found in the Alpha
Architecture Handbook, http://www.ee.lsu.edu/ee4720/alphav4.pdf. It’s 371 pages, don’t
print the whole thing.

! DLX Assembly Code
add r1, r2, r3 ! r1 = r2 + r3
addi r4, r5, #6
addf f0, f1, f2

! Alpha Assembly Code (Destination is last operand.)
addq r2, r3, r1 ! r1 = r2 + r3
addq r5, #6, r4
addt f1, f2, f0

Though the DLX and Alpha instructions are similar they are not identical.

• How do the data types and immediates differ between the corresponding DLX and Alpha
instructions?

• Show the coding for the DLX and Alpha instructions above. Show the contents of as many
fields as possible. For DLX, the addi opcode is 1. The add func field is 0 and the addf func
field is 1d16. For the Alpha fields, see the Alpha Architecture Manual and use the following
information: The Trapping mode should be imprecise and the Rounding mode should be
Normal. (Trapping [raising an exception] will be covered later in the semester.)

• How do the approaches used to specify the immediate version of an integer instruction differ?

• How is the approach used to code floating-point instructions different in Alpha than DLX?

http://www.ee.lsu.edu/ee4720/alphav4.pdf

