
Name Solution

Computer Architecture

EE 4720

Midterm Examination, Part I

Monday, 16 October 2000, 12:40–13:30 CDT

Alias Lets go Mets!!

Problem 1 (17 pts) Mon.

Problem 2 (17 pts) Mon.

Problem 3 (16 pts) Mon.

Problem 4 (13 pts) Wed.

Problem 5 (17 pts) Wed.

Problem 6 (20 pts) Wed.

Exam Total (100 pts)

Good Luck!



Problem 1: The program below executes on the pipeline below as illustrated in the pipeline
execution diagram below. Bypass paths do not appear in the illustration (below).

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Data

NPC

Control
Logic RD RD RD

3

4

3

7

8

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11
andi r8, r8, #31 IF ID EX ME WB
add r10, r9, r8 IF ID EX ME WB
bnez r8, LINEX IF ID EX ME WB
jalr r10 IF ID EX ME WB
xor IFx
...
subi r31, r31, #8 IF ID EX ME WB
sw 0(r10), r31 IF ID EX ME WB
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11

© [10 pts] Add exactly those bypass paths that are needed so that the code (above) executes as shown.
Credit will be deducted for unneeded bypasses. Please, please, please check the code carefully for
dependencies.

The bypass paths are shown in red bold.

© [7 pts] Next to each bypass path indicate the cycle(s) in which it will be used.

The cycle numbers are shown in blue.

2



Problem 2: As described in class, postincrement instruction lw r1,(r2+) loads the value at
memory address r2 into register r1 and stores r2+4 in r2. Postincrement stores are similar. The
pipeline below is to be modified so that it can execute postincrement loads and stores for bytes,
half words, and words. A logic block size can be used; its input is the opcode and func fields;
the output is 0 for a postincrement with a byte-size load or store value, 1 for a postincrement with
a half-word value, 2 for a postincrement with a word-size value, and 3 if the instruction is not a
postincrement load or store.

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr

D
 In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

RD RD RD
Decode

RD

A
D

 In
 2

Addr2

Decode
pstinc rs1

rs1 rs1 rs1

Size
"1"
"2"
"4"

© [10 pts] Show the datapath changes needed so that the pipeline can execute postincrement store
instructions. Include the control logic for obtaining the amount to increment the address by but
do not include any other control logic.

These changes are shown in red bold.

© [7 pts] Show the additional datapath changes needed so that the pipeline can execute postincrement
loads. These changes must not add structural hazards and the load must execute without stalling
the pipeline (assuming favorable dependencies).

These changes are shown in purple bold. The changes include a second register file write port so the loaded value and
incremented address can be stored at the same time. Also shown is a new control field, rs1, which is the rs1 register
number used in the postincrement instruction, or zero if any other instruction is used. The rs1 was not required for the
solution, but is included anyway.

3



Problem 3: The four-stage (no WB) pipeline below includes an Express Writeback feature, elimi-
nating the need for bypass connections. Instructions proceed through the pipeline slightly differently
than the DLX pipeline presented in class. Do not add or assume the presence of bypass connections.

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX MEM

IR

A

B

IMM

NPC

ALU

=0

Addr

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out

B

Data

NPC

Control
Logic

RD RD

© [6 pts] Show a pipeline execution diagram for the code below on this pipeline. (Don’t forget to look
for dependencies.) State any assumptions about how the register file operates.
add r1, r2, r3 IF ID EX ME
lw r4, 8(r1) IF ID EX ME
sw 12(r5), r4 IF ID -> EX ME

One disadvantage of Express Writeback is that it introduces a structural hazard.© [6 pts] Show a program that encounters the hazard and a pipeline execution diagram showing how
the hazard can be avoided by stalling. (Hint: the program can be just two instructions.)
lw r1, 0(r2) IF ID EX ME
add r3, r4, 45 IF ID -> EX

© [4 pts] Explain how Express Writeback affects the critical path.

The register write occurs in the same cycle as the ALU operation or memory operation, and so the critical path is longer.

Part II on Wednesday at 12:40 precisely.

4



Name Solution

Computer Architecture

EE 4720

Midterm Examination, Part II

Wednesday, 18 October 2000, 12:40–13:30 CDT

Alias

Problem 1 (17 pts) Mon.

Problem 2 (17 pts) Mon.

Problem 3 (16 pts) Mon.

Problem 4 (13 pts) Wed.

Problem 5 (17 pts) Wed.

Problem 6 (20 pts) Wed.

Exam Total (100 pts)

Good Luck!

5



Problem 4: The diagram below includes näıve hardware for implementing the jal and jalr
instructions. With this hardware precise exceptions are impossible.

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A

B

IMM

NPC

ALU

=0

Addr

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Data

NPC

Control
Logic

RD RD RD

© [6 pts] Explain why precise exceptions are impossible here.

Because the return address is written before it is certain that a preceding instruction will not raise an exception. If a
preceding instruction does raise an exception there is no way to restore the registers to the state they were in before the
faulting instruction was executed.

© [7 pts] Show a program including a jalr that encounters an exception and which does not run
correctly (after the exception handler returns) because of the way jalr is implemented. Briefly
explain why it does not run correctly. (For partial credit answer the question using an instruction
other than jalr.)
sw 0(r1), r31 IF ID EX*ME*WB
jalr r4 IF ID EXx

The sw encounters a page fault. When it is re-executed r31 will have the value stored by jalr rather than its previous
value.

6



Problem 5: For some, 16 bits is just not enough. Consider a new DLX instruction, mbi (move
big immediate), which moves a large immediate into register r1. (Register r1 is always used, a
different register cannot be specified.) The following code uses the new instruction:

mbi 0x12345 ! Move 0x12345 into register r1.
add r2, r1, r2 ! Use 0x12345 in an add.

© [5 pts] Describe how the instruction could be coded using an existing DLX instruction type to get
the biggest immediate possible. Specify the size of the immediate.

The instruction type with the largest immediate is type J, so code it as a type-J instruction. The immediate would be 26
bits.

Ignoring the previous part, suppose one wanted the immediate to be 30 bits.

© [4 pts] Why are 30-bit immediates impossible using an existing instruction type?

Because no existing type has a 30-bit immediate field, or any 30-bit field for that matter.

© [4 pts] Describe how a 30-bit immediate mbi could be coded using a new DLX instruction type.
(See the next subpart before answering.)

Have a new type, call it type B, with a two-bit opcode and a 30-bit immediate.

Whether it is possible to add a 30-bit immediate instruction and maintain compatibility depends
on certain details of DLX which during lectures were usually made up on the spot.

© [4 pts] What kind of details were those? Make them up so that the new instruction is compatible.

Opcodes. The mbi opcode will be 112, and so no other instruction can have an opcode starting with two 1’s.

7



Problem 6: Answer each question below.

(a) Loads and stores in DLX are aligned.

© [6 pts] What does that mean? Provide examples of aligned and unaligned accesses.

That means the address of the item being loaded or stored must be a multiple of its size. For words, the address must be
a multiple of 4 and for shorts a multiple of 2. Aligned: lw r1,0x4(r0). Unaligned: lw r1,0x2(r0).

(b) As described in class, an ISA implementing a time data type might have instructions to determine
the number of days between two times. (Say between 18 October 2000 and 15 December 2000.)

© [7 pts] Give two reasons why an ISA should not include such a time data type.

It wouldn’t be used very often and it would’nt be much faster.

(c) RISC and CISC are sometimes seen as two competing architectural styles.

© [7 pts] Name two features that distinguish RISC processors from CISC processors.

Fixed size instructions (RISC). ALU instructions that can access memory (CISC).

8


