10-1 Dynamic Scheduling

This Set

e Scheduling and Dynamic Execution Definitions

From various parts of Chapter 4.

e Description of Three Dynamic Scheduling Methods
Not yet complete.
(Material below may repeat material above.)

e Tomasulo’s Algorithm Basics
Section 4.2

e Reorder Buffer and Tomasulo’s Algorithm

Sections 4.2 and 4.8 plus non-text material.
Non-text material.

e Sample Problems

10_1 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil0.

10-1

10-1

10-2 Dynamic Scheduling 10-2

Scheduling:

Organizing instructions to improve execution efficiency.

Static Scheduling:

Organizing of instructions by compiler or programmer to improve execution efficiency.

Dynamic Scheduling [processor implementation]:
A processor that allows instructions to start execution ...
... even if preceding instructions are waiting for operands.

Static scheduling advantage: time and processing power available to scheduler (part
of compiler).

Dynamic scheduling advantage: branch outcomes known.

10_2 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil0. 10_2

10-3

10-3

Unscheduled Code

Scheduling Examples

addf
subf
multf
1d
addi
subi

fO0,
£3,
f5,
£8,
rl,
r2,

f1, f2
f0, f4
f6, f7
0(r1)

rl, #8
r2, #1

EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil0.

10-3

10-3

10-4

10-4

Unscheduled Code on Chapter-3 DLX

Cycle:
addf £f0, f1, £f2
subf f£3, f0, f4
multf £5, f6, £f7
1d £8, 0(r1)
addi ri1, ri1, #8
subi r2, r2, #l1

0 1 2 3 4 b 6
IF ID AO Al A2 A3 WB

IF ID ---—--——- > A0
IF ———-————- > 1ID
IF

Al
MO
ID
IF

A3
M2
EX
ID
IF

10 11

WB

M3 M4 M5 M6 WB
MEM WB

EX MEM WB

ID EX MEM WB

Execution has four stall cycles.

EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil0.

10-4

10-4

10-5

10-5

Code Static Scheduled on Chapter-3 DLX

Instructions reordered by compiler or programmer to remove stalls.

Cycle:
addf f0, f1,

2

1d £8, 0(r1)

multf £5, f6,
addi ri1, ri,
subf £3, fO0,
subi r2, r2,

f4
#3
f4
#1

0 1 2 3
IF ID A0 A1
IF 1ID EX

IF 1D
IF

4
A2
MEM
MO
ID
IF

A3
WB
M1
EX
ID
IF

6 7
WB

M2 M3
MEM WB
A0 A1l
ID EX

8 9 10 11

M4 M5 M6 WB

A2 A3 WB
MEM WB

Execution has zero stall cycles.

EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil0.

10-5

10-5

10-6

10-6

Execution of unscheduled code on dynamically scheduled processor:

Cycle:
addf £f0, f1, £f2
subf f£3, f0, f4
multf £5, f6, £f7
1d £8, 0(r1)
addi ri1, rl, #8
subi r2, r2, #l1

0 1 2 3
IF ID A0 A1l
IF ID RS
IF 1D
IF

4

A2
RS
MO
ID
IF

A3
RS
M1
EX
ID
IF

6 7 8
WB

AO A1 A2
M2 M3 M4
MEM WB

EX MEM WB
ID EX MEM

9 10 11

A3 WB
M5 M6 WB

WB

Processor delays subf until £0 is available.

Note that instructions start out of order (multf before subf) ...

... this is called out-of-order execution.

RS is a reservation station (waiting area) were subf is held until it can execute.

EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil0.

10-6

10-6

10-7 Dynamic Scheduling Overview

What a dynamically scheduled processor must do:
Provide storage for instructions waiting for operands.
Detect when operands for waiting instructions become available.

These will avoid stalls due to true dependencies.

What a dynamically scheduled processor may do:

Assign a new name to a register each time it is written ...

... and use those names for source operands.

This will avoid stalls due to name dependencies.

10_7 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil0.

10-7

10-7

10-8 Dynamic Scheduling Terminology 10-8

Issue [an instruction]

Assignment of an instruction to a reorder buffer entry.

Initiate Execution

Movement of an instruction into an execution unit.

Complete [Execution]

Movement of an instruction out of an execution unit with the result computed.

Commit (a.k.a. Retire)

Irreversibly write an instruction’s results to a register or memory.

In Flight

The state of an instruction after being issued but before being committed.

(Definitions will be illustrated in reorder buffer example.)

10_8 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil0. 10_8

10-9 Dynamic Scheduling Methods 10-9

Three main methods described, differ in what temporary name refers to:
Reorder buffer entry number.
Reservation station number.

Physical register number.

Common Features:
Use of reorder buffer for exception and misprediction recovery 1.

Use of register map to translate between architected (e.g., r1, £10) register name and tem-
porary name.

Common data bus used to broadcast instruction results.

1 In some 20th century homeworks the reorder buffer is omitted.

10_9 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil0. 10_9

10-10 Method 1: Reorder Buffer Entry Naming 10-10

Characteristics
Fastest and simplest method.

May not be used in real processors (though parts are).

Major Parts (N.B.: Parts used differently with other methods.)

Reorder Buffer (ROB):

A list, in order, of executing instructions.

Register Map:
Used in place of register file. Provides value or ROB entry # for each register.

Register File:
Holds committed register values, used for recovery.

Reservation Station:
A buffer where instructions wait to execute.

10_10 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_10

10-11

D)

(Method 1) Hardware

(D)

Op, RS

ROB #

Dest

i v
+4
PC
PC
Addr
Mem
Port paal IR

Reorder Buffer <_l a
Od

o 1]
XD 1s€—0'0
‘TeAd—T(INN

~
)
2
=

. Map

Val.

6..10
Data

Data

|ROB #

Val.

|ROB #

Reg. File

|—Dest Addr
. DIn

Stage name shown next to hardware used in that stage.

The following are omitted:

—~WE)

RS’s Int. Unit
— >
FP Add
RS’s Unit
(o]
(o]
(o]
I

Common Data Bus (CDB)

Branch hardware, immediates, load /store hardware.

Connections used for recovery.

10-11

EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10.

10-11

10-11

10-12 (Method 1) Reorder Buffer

Reorder Buffer (ROB):
A list, in order, of in-flight instructions.

Each entry holds information on an instruction:

PC IR Status Value Dest..

PC: Program counter (address) of instruction.

IR: The decoded instruction. (Not used here.)

Status: Whether completed, and whether raised an exception.
Value: The result produced (if applicable).

Dest.: The destination register to be written.

An instruction “uses” the reorder buffer three times.

10_12 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10.

10-12

10-12

10-13 (Method 1) Register Map

Register Map
Used in ID and WB stage.
Indexed using architected register number.

When an architected register number placed at Addr input ...
... provides the latest value or ...
... the ROB entry # of instruction that will produce latest value.

Has four ports:

Two for reading source operands (during ID).

One for writing the new ROB # of the destination (during ID).

One for writing results (during WB).

10_13 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10.

10-13

10-13

10-14 (Method 1) Register File 10-14

Register File
Works like register file in statically scheduled (Chapter-3) implementation.
Values written when instructions commit.

Used to recover from an exception or misprediction.

10_14 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_14

10-15 (Method 1) Reservation Station 10-15

Reservation Station:
A buffer where instructions wait to execute.

Each functional unit has a set of reservation stations.
In ID an instruction is assigned to a RS based on opcode.

Reservation Station Entry:

Op ROB# Dest Vall ROB#1 Val2 ROB#2

Op: Operation (May not be same as opcode, but specifies same operation.)

ROB#: Reorder buffer entry holding instruction (name of result).

Dest: Destination register number.

Vall, ROB#1: Value of (rs1) (operand 1) or ROB entry of instruction that will produce it.

Val2, ROB#2: Value of (rs2) or ROB entry of instruction that will produce it.

10_15 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_15

10-16 (Method 1) Common Data Bus 10-16

Common Data Bus (CDB):
A bus connecting functional units to other parts of the processor, used to broadcast

results.

Data on CDB:
Dest ROB# Status Value

Dest: Destination register.
ROB #: Reorder buffer entry number. (Temporary name of dest.)
Status: Happy ending, or an exception?

Value: The result. Can’t forget that.

10-16

10_16 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10.

10-17 (Method 1) Operation 10-17

Stages in execution of an instruction.
IF: Same as chapter 3. (Will change later.)
ID:

Initialize new reorder buffer entry.

Reorder buffer provides the new ROB #.

Val can be set to anything, Status bits: complete, 0; exception, O.

Controller chooses reservation station.

Read operands from register map.

Result of read is either value or ROB #.

Write ROB# (new name for destination) to register map.

10_17 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_17

10-18
RS/EX:
If both operands found in register map, start execution, otherwise wait in reservation station.

If waiting in reservation station:

“Listen” to CDB for ROB # of missing operands ...
... when “heard” copy value into RS entry.

When both values available, execution can start.

WB:

When functional unit completes execution it tries to get control of CDB (contending with
other units).

When it gets control it places result and other information on the bus ...
. instructions waiting in RS may copy the result (if they need it) ...
... the result is written into the register map ...

... the status (hopefully complete, but there could have been an exception) is written
into the reorder buffer.

10_18 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil0.

10-18

10-18

10-19
C (Commit):

When instruction reaches the head of the ROB ...
... the controller checks the status.

If execution complete and unexceptional:

Value written into register file.

If execution complete but encountered an exception:

Recovery is initiated ...

... All instructions in reorder buffer squashed, ...

... the register file is copied to the register map, and ...
... exception handler address loaded into PC.

10_19 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil0.

10-19

10-19

10-20 (Method 1) Comments 10-20

Method for handling loads and stores covered later.
Details, such as handling of immediates and branches omitted.
If it’s the 21st century, ask for more examples.
A value can be in several places:
The register map, the reorder buffer, the register file, and a reservation station.
This uses alot of storage and wires (which is expensive to implement) but has two advantages:
Relatively simple to explain.

Fast because values are stored at functional units (in RS).

10_20 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_20

10-21 Method 2: Reservation Station Entry Naming 10-21

Differences with method 1:
Reservation station number, rather than ROB entry used to identify operands.

Reservation station held by an instruction until it completes execution ...

... to avoid name duplication.

For example, addf below keeps RS 0 and subf is assigned RS 1. This way when addf finishes
and writes RS 0 on the CDB to identify the result we can be sure no other instruction is
using RS 0 for the result (as subf might have).

I Cycle 0 1 2 3 4 5 6 7 8 9 10
addf £0, f1, £f2 IF ID 0:A0 O:A1 0:A2 0:A3 WC

subf f0, f0, f4 IF ID 1:RS 1:RS 1:RS 1:A0 1:A1 1:A2 1:A3 WC
mulf f£f5, f0, f6 IF ID 2:RS 2:RS 2:RS 2:RS 2:RS 2:RS 2:Mi1...

No diagram for method 2 (since very similar to method 1).

10_21 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_21

10-22 Method 3: Physical Register Naming 10-22

Difference with method 1:
A single register file, called the physical register file used to store values.
Instructions wait in an instruction queue for execution. (No reservation stations.)

A scheduler chooses instructions from queue to execute ...
... when chosen they read registers and in the next cycle. ..
... move to an execution unit.

Two register maps are used:

One provides physical register numbers for architected registers taking into account issued
instructions.

One provides physical register numbers for architected registers taking into account com-
mitted instructions. (Used for recovery.)

10_22 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_22

10-23 10-23
Two free lists are used.
Free list holds list of unused physical registers.
One free list holds physical register not holding committed values.

One free list holds physical register not holding any needed values.

10_23 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil0. 10_23

10-24 (Method 3) Hardware 10-24

D @
ROB # Instr. Queue
Op, PR#, ROB#
@D p
Physical
4] PC Reg. Map In out Register File
6..10 PR#1] Val.
o o e
11..15 al.
+4 m o Addr Data [PR#2 Addr Data
o PR#
T ! Dest § addr o G
—4 D In
P*C { i %i, PRP2___|
| 0333 (WB)
pC o0 2% Now Remd Add m
. > PR# Free List
(4]
Addr E >
Mem g Free List
Port S
0 Datal—f§ IR e
Reg. Map
DIn Data

i |CED

Common Data Bus (CDB)

Stage name shown next to hardware used in that stage.

The following are omitted:

Execute stage, branch hardware, immediates, load /store hardware.

Connections used for recovery.

10-24

10_24 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10.

10-25 Loads and Stores in Dynamically Scheduled Processors 10-25

Load /Store Unit (LSU)

Loads and stores done in two steps:
L1: Address computation, and

L2: Memory read or write.

L2 may encounter a cache miss (data far away).

Cache used with load/store unit can be blocking or non-blocking.

10_25 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_25

10-26

10-26

If cache is blocking must wait for data to arrive before attempting other loads or stores.

For example,

! Example: O0(r4) in cache, but 0(r2) not in cache.

I Cycle o 1 2 3

lw r1, 0(r2) IF ID L1 L2
lh r3, 0(r4) IF 1D L1
add r10, ri10, ri IF 1ID
sub ri11, ri1, r3 IF

10 11
--> WB
--> 12
RS EX
RS RS

12

WB
->
RS

13 14
WB
EX WB

Because cache is blocking miss by 1w forces 1h (and sub) to wait, even though data cached.

10_26 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_26

10-27

If cache is non-blocking can attempt other loads and stores while handling miss:

With a non-blocking cache, instruction would not wait in L2 during cache miss.

For example,

! Example: 0(r4) in cache, but 0(r2) not in cache.

I Cycle o 1 2 3
lw r1l, 0(xr2) IF ID L1 L2
lh r3, 0(r4) IF ID L1
add r10, ri10, ri IF 1D
sub ri11, ri1, r3 IF

4 b5 6 ... 10 11 12 13 14
RS -—————- ... L2 WB

L2 WB

RS RS RS... RS EX WB

ID EX WB

Because cache is non-blocking miss by 1w does not delay 1h (or sub).

10_27 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10.

10-27

10-27

10-28 10-28
Load and Store Dependencies

Loads and stores have dependencies too.

Consider:
I At cycle 5 we know O(rl) != 0(r5), but the processor is not omniscient.
I Cycle 0 1 2 3 4 b 6 ... 10 11 12 13 14
lw r1, 0(r2) IF ID L1 L2 RS -—————- ... L2 WB
sw 0(r1l),r3 IF ID RS RS L1 L2 WB
lw r4, 0(rb) IF ID L1 RS --———... RS L2 WB
add rb5, r4, rb5 IF IDRS -———-... RS RS EX -> WB

sw had to wait because of the true dependency on ri.

Since r1 not available the second 1w has to wait because of ...

... a possible address dependency: 0(r1) ;O(rS).

10_28 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_28

10-29 10-29

The situation is different when the store address is available:

Consider:

I At cycle 5 we know 0(r3) != 0(r5), and the processor does too.

I Cycle 0 1 2 3 4 b 6 ... 10 11 12 13 14
lw r1l, 0(r2) IF ID L1 L2 RS -————- ... L2 WB

sw 0(r3),r1 IF ID L1 RS L2 WB

lw r4, 0(r5) IF ID L1 L2 WB

add rb5, r4, rb IF ID RS EX WB

Here, the second 1w uses a different address than the sw, so it doesn’t have to wait.

10_29 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_29

10-30
Load /Store Units for Non-Blocking Caches
LSU maintains a queue of instructions in program order.
It keeps track of which instructions are waiting for addresses.

Store instructions write the cache when they retire.

Load instructions can read (bypass) data from store instructions in the queue.

The memory (L2) part of a load operation can proceed if. ..

. its address is available . ..
... addresses for all preceding queued store instructions are available ...
... the load address does not match any preceding store instructions or. ..

... the address does match a store and the (latest) store data is available.

10_30 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil0.

10-30

10-30

10-31 Editorial Comment 10-31

The slides that follow contain material that has not yet been integrated into the
material above, and so it may seem repetitive or out of place.

10_31 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_31

10-32 Dynamic Scheduling Methods 10-32

Scoreboard
Avoids stalls due to true dependencies.

Covered in text section 4.2, but not in class.

Tomasulo’s Algorithm

Avoids stalls due to name dependencies . ..

... by assigning a new name to (renaming) each destination register.

Avoids stalls due to true dependencies . ..

... by holding instructions (in reservation stations) waiting for operands.
Three variations covered in class.

Widely used in real systems.

10_32 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_32

10-33 Tomasulo’s Algorithm Basics

Implementation methods vary, a simple system described.

Reservation Station (RS)

Buffer area where instructions wait for operands and an execution unit.

Each functional unit has several reservation stations.

Common Data Bus (CDB)

A bus connecting functional unit output to ...
... register file (in some cases) ...
... reservation stations ...

... other devices awaiting instruction completion.

CDB used to pass results from functional unit to ...
... waiting instructions ...

... and (in some cases indirectly) the register file.

10_33 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10.

10-33

10-33

10-34 Tomasulo’s Algorithm Basics 10-34

When an instruction is in ID (during issue):
A reservation station is assigned to the instruction.
A temporary name is chosen for destination register.

Following instructions refer to that temporary name.

When an instruction completes execution:
Result broadcast on CDB along with temporary name and other information.
Result read from CDB by instructions in RS that need it.

Depending on variation result is. ..
... written to register file (if it’s the latest value) ...
... or written to other storage area before reaching register file.

10_34 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_34

10-35 Execution With Reservation Stations

Pipeline Execution Diagram Notation
Instruction in reservation station x indicated by: z:RS.

Instruction using RS 3 in stage 4 of multiply: 3:M4.

Timing
Option 1: CDB to execution unit and RS.

Waiting instruction starts while dependent instruction in WB.

Option 2: CDB to RS, RS to execution unit.

Waiting instruction starts cycle after dependent instruction in WB.

10_35 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10.

10-35

10-35

10-36xample: 10-36

Reservation station numbers: fp add unit, 0-3; fp mult unit, 4-5.

Timing uses option 1, reservation station numbers will be used for temporary names.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13
multf £fO0, f1, £f2 IF ID 4:M1 4:M2 4:M3 4:M4 4:M5 4:M6 4:M7 4:WB

subf £3, f0, f4 IF ID O:RS O:RS O:RS O:RS O:RS O:RS 0:A1 0:A2 0:A3 0:A4 0O:WB
addf fO, f5, f6 IF ID 1:A1 1:A2 1:A3 1:A4 1:WB

1tf fO, £f7 IF ID 2:RS 2:RS 2:RS 2:A1 2:A2 2:A3 2:A4 2:WB

In cycle 1 multf assigned RS 4 and it reads values for £1 and £2. RS 4 is the temporary
name given to its result, £0.

In cycle 2 subf assigned RS 0. It reads the value of £4 and the reservation station that will
produce £0, RS 4.

In cycle 3 subf sits in RS 0 waiting for multf to finish to get £0, a.k.a., RS 4.

Meanwhile, in ID, addf is assigned RS 1, £0 will now be known as RS 1. Values for £5 and
f6 are read.

In cycle 4 1tf assigned RS 2. It reads a value for £7 but it will have to wait for RS 1 to

finish to get £0. (£0 and £7 are source operands of 1tf, the destination is the floating-point
condition code register).

10_36 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_36

10-37 10-37

Example, continued.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13
multf fO0, f1, f2 IF ID 4:M1 4:M2 4:M3 4:M4 4:M5 4:M6 4:M7 4:WB

subf £3, f0, f4 IF ID O0:RS O:RS O:RS O:RS 0O:RS 0:RS 0:A1 0:A2 0:A3 0:A4 0:WB
addf £fO0, f5, £f6 IF ID 1:A1 1:A2 1:A3 1:A4 1:WB

1tf fo, f7 IF ID 2:RS 2:RS 2:RS 2:A1 2:A2 2:A3 2:A4 2:WB

In cycle 8 addf writes the common data bus, 1tf copies the result and starts execution.

In cycle 8 the register file is updated since RS 1 is the latest name of £0. (The register file
would not be updated in this cycle if a reorder buffer were being used. See next example.)

In cycle 9 multf writes the CDB, subf copies the result.

In cycle 9 the register file is not updated since RS 4 is an outdated name for £O.

10_37 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_37

10-38
Example:
Reservation station numbers: fp add unit, 0-1; fp mult unit, 4-5, 6-9 integer unit.
Add unit has one less reservation station than in last example.
Timing uses option 2.
Reservation stations will be used for temporary names.
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
multf fO, f1, £f2 IF ID 4:M1 4:M2 4:M3 4:M4 4:M5 4:M6 4:M7 4:WB
subf f£3, f0, f4 IF ID O:RS O:RS O:RS O:RS O:RS O:RS O:RS 0:A1 0:A2 0:A3 0:A4 O:WB
addf fo0, f5, f6 IF ID 1:A1 1:A2 1:A3 1:A4 1:WB
1tf f0, f7 IF ID - > 1:A1 1:A2 1:A3 1:A4 1:WB
Xor rl, r2, r3 Ir -----—————————-— > ID 6:EX 6:WB

Because of CDB timing option 2, subf waits an extra cycle to start, during cycle 9.

Because there are not enough add reservation stations, decoding stalls at cycle 5.

10-38

EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10.

10-38

10-38

10-39 Dynamic Scheduling with Tomasulo’s Algorithm Variations 10-39

Three variations, differ in what “temporary name” refers to:

e Reservation Stations Only

Temporary name is reservation station number of instruction producing result.
(Used in examples above.)

e Reorder Buffer and Reservation Stations

Temporary name is reorder buffer entry number of instruction producing result.

e Reorder Buffer, Reservation Stations, Physical (Rename) Registers

Temporary name is name of a special rename register.

Second and third variations commonly used.

10_39 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_39

10-40 Reorder Buffer 10-40

Reorder Buffer

A buffer holding information about instructions, kept in program order.
Each instruction occupies a reorder buffer entry.

Each entry has a unique number which can be used to identify the instruction.

10_40 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_40

10-41

10-41

Reorder Buffer Use

In ID reorder buffer entry created for instruction.
Entry updated during instruction execution.

Entry removed if ...
... 1t is the oldest entry ...
... and the instruction has completed execution.

When an entry is removed ...

... the register file is written if the instruction writes a register ...

... memory is written if the instruction writes memory.

When an entry is removed the instruction is said to commit.

Hardware limits number of instructions that can commit per cycle ...

... usually the same as the number that can issue per cycle (1 so far).

Commit shown in execution diagram with a WC or
or C if it occurs later.

WB

if it occurs during writeback

Removal of item from reorder buffer sometimes called retirement.

EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10.

10-41

10-41

10-42 10-42
Example:
Reservation station numbers: fp add unit, 0-3; fp mult unit, 4-5.
Timing uses option 1.

Reorder buffer entry numbers will be used for temporary names. (Entry numbers not shown
in diagram.)

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
multf fO, fO, f2 IF 1ID M1 M2 M3 M4 M5 M6 M7 WC

subf £3, f0, f4 IF ID O0:RS O:RS O:RS O:RS 0:RS 0:RS Al A2 A3 A4 WC

addf £fO0, f5, f6 IF ID A1 A2 A3 A4 WB C

1tf fOo, £f7 IF ID 2:RS 2:RS 2:RS A1l A2 A3 A4 WB C

RS assignment same as earlier examples however RS freed when execution starts. Note
commit symbols in diagram.

Table showing time of events during instruction execution:

Instr Issue Initiate Ex. Complete Ex. Commit

multf 1 2 8 9
subf 2 9 12 13
addf 3 4 7 14
1tf 4 8 11 15

10_42 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_42

10-43 Reorder Buffer and Exceptions 10-43

Precise exceptions easily provided with a reorder buffer.
Reorder buffer entry has an exception bit.
Bit is tested when instruction reaches head of buffer (is oldest in buffer).
If bit is set reorder buffer cleared and a trap instruction inserted in pipeline.

Because bit tested when faulting instruction reaches buffer head ...
... all preceding instructions have executed and their registers and memory written.

Because buffer cleared, none of the following instructions have written registers or memory.

Therefore, exceptions are precise.

10_43 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_43

10-44 Register Mapping 10-44

Register Mapping (noun)

The temporary name (RS, reorder buffer entry, or rename register) of an architecturally
visible register.

Register Mapping (verb)

The process of finding the temporary name of an architecturally visible register.
Method of Register Mapping (useful in all variations)

Maintain a table indexed by architecturally visible register number ...
... the table can be part of the register file itself ...

... or use a separate memory device (easier to implement).
The table provides the latest temporary name, if any.
(If latest value is in register file, there is no temporary name.)

Table called a register map.

10_44 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_44

10-45 Register Mapping and Cancelled Instructions 10-45

Initially all registers map to the architecturally visible ones.

As instructions are issued the register map is updated with temporary names.

If an in-flight instruction is cancelled, the register map file may become invalid.

To safely cancel an instruction (e.g., for an exception) when using a reorder buffer:
Wait for instruction to reach head of reorder buffer.
At this point the register file has been updated for all preceding instructions.
Cancel remaining instructions.

Reset the map file (so that all registers map to the architecturally visible ones).

10_45 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_45

10-46 Sample Problems 10-46

Dynamic Scheduling
EE 4720 terminology notes:
Before 1999, dynamic scheduling called dynamic issue in course materials.
Rename registers were not used in problems before 1999. Do not confuse register renaming

(assignment of a temporary name to a destination register) with rename registers (a set
of additional registers to hold results until an instruction commits).

1998 Homework 4, Problems 4 and 5.
1997 Final Exam, Problems 2a and 2b.

See also multiple-issue sample problems, at end of lecture notes sets 11 and 12.

10_46 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil10. 10_46

10-47 10-47
Reorder Buffer
EE 4720 terminology note: before 1999 the term retire is used instead of commit.
1998 Homework 6, Problem 1. (Includes later material.)

1998 Final Exam, Problem 2. (Includes later material.)

10_47 EE 4720 Lecture Transparency. Formatted 12:30, 25 October 2000 from Islil0. 10_47

