05-1 The DLX ISA 05-1

Coverage

Textbook Section 2.8

Topics
DLX Goals
DLX Instruction Highlights
DLX Instruction Coding

Synthetic Instructions (NIB)

05_1 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05. 05_1

05-2 DLX Design Considerations

DLX Goals
A typical RISC processor.
Incorporate features with demonstrated usefulness.

Enable simple, high-speed, implementation

Demonstration of Usefulness of Features
Covered in Chapters 1, 2.
Determined by analyzing existing ISAs.
Some usefulness illustrated with graphs (e.g., immediate sizes).

Less useful, “it would be nice,” features omitted.

05_2 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05.

05-2

05-2

05-3
DLX’s Useful Features
Lots of general purpose registers.
Integer and floating-point operands.
Basic arithmetic and logical operations.
Basic addressing modes: register, immediate, displacement.

Adequate immediate and displacement sizes.

Etc.

Simple, High-Speed Implementation

Load-Store Architecture: ALU instructions do not access memory.

Simple Coding: uniform instruction sizes, few instruction types.
Work Balance: Instructions do about the same amount of work.

Separate integer and FP register files.

05_3 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05.

05-3

05-3

05-4 05-4
Simple Coding Advantages
Simpler and faster decoding logic.

Execution can start before decoding complete.

Work Balance Advantages
Efficient use of CPU hardware.
Integer operations are balanced.

Floating-point operations are not. (Division takes longer than ADD.)

05_4 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05. 05_4

05-5

Separate Register File Advantages

Double the number of registers with only 1 bit per instruction (in opcode).

(Otherwise, 1 extra bit per operand would be needed.)

Splits register reads and writes between two register files.

With one large set of registers ...
. if n instructions start at once, need to access 2n registers ...

... all stored in one file (memory device) — expensive and slow.

With separate integer and FP register files ...
... each file would only have to provide n registers ...

. (assuming equal number of integer and FP instructions).

Note: Currently, n varies from 2 to 6.

Details on these implementation factors covered later.

05_5 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05.

05-5

05-5

05-6 DLX Registers and Data Types

Data Types
Integer: 8-bit (byte), 16-bit (half words), 32-bit (words).

Floating point: 32-bit single precision, 64-bit double precision.

Registers

32 32-bit general-purpose registers (GPRs), r0-r31, including a zero register, r0.

32 32-bit floating-point registers (FPRs), £0,f1,f2,...,£31 ...
... which can be used as 16 64-bit registers, £0,f2,f4,...,£30.

A floating-point status register (for outcome of comparisons, used by branches).

05_6 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05.

05-6

05-6

05-7 DLX Instruction Highlights

Instruction Highlights

Single, but flexible, memory addressing mode: Displacement.

Special load high (LHI) instruction for (part of) 32-bit constants.

Dummy, but very handy, register r0. (Value always 0.)

Displacement Addressing Flexibility
Classic Displacement Addressing

lw r1, 4(r2) Il r1 = MEM[r2 + 4]

Register Indirect (Use zero displacement.)

Lw rl1, 0(r2) I r1 = MEM[r2]

Absolute (Use r0, limited because of immediate size.)

Lw rl, 1234(r0) ! r1 = MEM[1234]

05_7 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05.

05-7

05-7

05-8 05-8
LHI Examples
Used to load constants.
Needed because immediate size limited to 16 bits.

Example, set r1 = 0x12345678

0x12340000
rl 0x5678 (bitwise or)

1hi r1, 0x1234 ' rl
ori rl, rl1, #0x5678 ' rl

05_8 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05. 05_8

05-9 05-9
Fun with r0, and other tricks.

Set a register to zero:

add ri1, rO, r0 l'rl1 =0+ 0 = 0.
addi r1, rO, #0 l'r1 =0+ 0 = 0.
sub rl, ri1, ri l'rl =r1l - ril = 0.
xor rl1, rl, ril ' r1 = rl xor r1 = 0.
Move one register to another:
add r2, ri1, rO l'r2 =r1 +0 =rl
and r2, ri, ri l'r2 =rl1 & rl = ril
andi r2, ri1, #0 l'r2 =r1 & 0 =ri1

Bitwise Negation

XORI r2, r1, #1 ' r2 = ri

05_9 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05. 05_9

05-10 05-10
DLX Instruction Coding

All instructions have 6-bit opcode.

Three types.
Type R: Three registers, plus extra opcode field.
Type I: Two registers, plus 16-bit immediate field.

Type J: One 26-bit immediate field.

05_10 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05. 05_10

05-11

Type R
Opcode sl rs2 rd func
0 5 6 10 11 15 16 20 21 31

For Type R instructions opcode field zero ...
... operation specified using func field.

Used for arithmetic, logical, and move instructions.

Sometimes just two registers used, but func field needed for operation.

Examples
add rl, r2, r3 ! Add integer registers.
addf f1, £2, £3 ! Add FP registers, single precision.
addd f2, f4, £f6 I Add FP registers, double precision.
movi2s f1, ril I Move rl1 to f1. (rs2 operand not used.)

05_11 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05.

05-11

05-11

05-12

05-12

05-12
Type R Examples
add rl, r2, r3 ! Add integer registers.
Type R r2 r3 ri add
0 2 3 1

0 5 6 10 11 15 16 20 21 31
addf f1, £2, £3 ! Add FP registers, single precision.
Type R £2 £3 f1 addf

2 3 1
0 5 6 10 11 15 16 20 21 31
movi2s f1, r1 ! Move rl to f1. (rs2 operand not used.)
Type R r1 Unused f1 movi2s

1 1
0 5 6 10 11 15 16 20 21 31

EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05.

05-12

05-13

Type I:
Opcode sl rd Immediate
0 5 6 10 11 15 16 31

Used for loads, stores, some CTIs, and ALU immediate instructions.

Examples

addi rl1, r2, #3
1w r2, 10(r3)

l' rl1 = r2 + 3
I r2 = MEM[r3+10]

beqz rl, 20 if(r1 == 0) goto PC + 4 + 20 * 4 (rd unused).
jr ri I goto ril
jalr rl l 31 = pc + 4; goto rl

05_13 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05.

05-13

05-13

05-14

Type I Examples

addi rl1, r2, 3! r1 =1r2+ 3
addi r2 rl 3

1 2 1 3
0 5 6 10 11 15 16 31

lw r2, 10(r3) !

1w r3

r2 = MEM[r3+10]

r2 10

0x28

3 2 Oxa

0 5 6

10 11 15 16 31

begz r1, 20 ! if(rl == 0) goto PC + 4 + 20 * 4 (rd unused).

beqz rl

Unused 20

Oxle

1 0x14

0 5 6

05-14

10 11 15 16 31

EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05.

05-14

05-14

05-15 05-15
Type J:

Opcode Offset

0 5 6 31

Used for jump and jump & link.

Examples:
j 0x1234 I goto PC + 4 + 0x1234 * 4
jal 0x1234 ' r31 = PC + 4; goto PC + 4 + 0x1234 * 4

j 0x1234 ! goto PC + 4 + 0x1234 * 4
j 0x1234

0x30 0x1234
0 5 6 31

05_15 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05. 05_15

05-16 05-16
Synthetic Instructions and DLX (NIB)
Misleading (in a nice way) assembly language mnemonics.
Implies a “new” opcode, but really uses an existing one.
Meant for programmer convenience.

Example, set register to zero:

clr ril ! Synthetic instruction
add r1, r0, r0 | True instruction (DLX)

Assembler generates a add r1, r0O, rO when it finds a clr r1 mnemonic.

Assembler “sees” synthetic instruction but processor only sees true instructions.

05_16 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05. 05_16

05-17 05-17

Sample Synthetic Instructions (NIB)

No Operation:

nop I Synthetic
add r0, r0, r0 ! DLX
bnez r0, O I DLX

Register move:

movi2i rl, r2 I Synthetic
add rl, r2, rO ! DLX

Bitwise invert:

not rl, r2 I Synthetic
xori rl, r2, #-1 ! DLX

05_17 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from Isli05. 05_17

