
05-1 05-1The DLX ISA

Coverage

Textbook Section 2.8

Topics

DLX Goals

DLX Instruction Highlights

DLX Instruction Coding

Synthetic Instructions (NIB)

05-1 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-1

05-2 05-2DLX Design Considerations

DLX Goals

A typical RISC processor.

Incorporate features with demonstrated usefulness.

Enable simple, high-speed, implementation

Demonstration of Usefulness of Features

Covered in Chapters 1, 2.

Determined by analyzing existing ISAs.

Some usefulness illustrated with graphs (e.g., immediate sizes).

Less useful, “it would be nice,” features omitted.

05-2 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-2

05-3 05-3

DLX’s Useful Features

Lots of general purpose registers.

Integer and floating-point operands.

Basic arithmetic and logical operations.

Basic addressing modes: register, immediate, displacement.

Adequate immediate and displacement sizes.

Etc.

Simple, High-Speed Implementation

Load-Store Architecture: ALU instructions do not access memory.

Simple Coding: uniform instruction sizes, few instruction types.

Work Balance: Instructions do about the same amount of work.

Separate integer and FP register files.

05-3 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-3

05-4 05-4

Simple Coding Advantages

Simpler and faster decoding logic.

Execution can start before decoding complete.

Work Balance Advantages

Efficient use of CPU hardware.

Integer operations are balanced.

Floating-point operations are not. (Division takes longer than ADD.)

05-4 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-4

05-5 05-5

Separate Register File Advantages

Double the number of registers with only 1 bit per instruction (in opcode).

(Otherwise, 1 extra bit per operand would be needed.)

Splits register reads and writes between two register files.

With one large set of registers . . .

. . . if n instructions start at once, need to access 2n registers . . .

. . . all stored in one file (memory device) — expensive and slow.

With separate integer and FP register files . . .

. . . each file would only have to provide n registers . . .

. . . (assuming equal number of integer and FP instructions).

Note: Currently, n varies from 2 to 6.

Details on these implementation factors covered later.

05-5 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-5

05-6 05-6DLX Registers and Data Types

Data Types

Integer: 8-bit (byte), 16-bit (half words), 32-bit (words).

Floating point: 32-bit single precision, 64-bit double precision.

Registers

32 32-bit general-purpose registers (GPRs), r0-r31, including a zero register, r0.

32 32-bit floating-point registers (FPRs), f0,f1,f2,...,f31 . . .

. . . which can be used as 16 64-bit registers, f0,f2,f4,...,f30.

A floating-point status register (for outcome of comparisons, used by branches).

05-6 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-6

05-7 05-7DLX Instruction Highlights

Instruction Highlights

Single, but flexible, memory addressing mode: Displacement.

Special load high (LHI) instruction for (part of) 32-bit constants.

Dummy, but very handy, register r0. (Value always 0.)

Displacement Addressing Flexibility

Classic Displacement Addressing

lw r1, 4(r2) ! r1 = MEM[r2 + 4]

Register Indirect (Use zero displacement.)

Lw r1, 0(r2) ! r1 = MEM[r2]

Absolute (Use r0, limited because of immediate size.)

Lw r1, 1234(r0) ! r1 = MEM[1234]

05-7 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-7

05-8 05-8

LHI Examples

Used to load constants.

Needed because immediate size limited to 16 bits.

Example, set r1 = 0x12345678

lhi r1, 0x1234 ! r1 = 0x12340000
ori r1, r1, #0x5678 ! r1 = r1 0x5678 (bitwise or)

05-8 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-8

05-9 05-9

Fun with r0, and other tricks.

Set a register to zero:

add r1, r0, r0 ! r1 = 0 + 0 = 0.
addi r1, r0, #0 ! r1 = 0 + 0 = 0.
sub r1, r1, r1 ! r1 = r1 - r1 = 0.
xor r1, r1, r1 ! r1 = r1 xor r1 = 0.

Move one register to another:

add r2, r1, r0 ! r2 = r1 + 0 = r1
and r2, r1, r1 ! r2 = r1 & r1 = r1
andi r2, r1, #0 ! r2 = r1 & 0 = r1

Bitwise Negation

XORI r2, r1, #-1 ! r2 = r1

05-9 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-9

05-10 05-10
DLX Instruction Coding

All instructions have 6-bit opcode.

Three types.

Type R: Three registers, plus extra opcode field.

Type I: Two registers, plus 16-bit immediate field.

Type J: One 26-bit immediate field.

05-10 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-10

05-11 05-11

Type R

Opcode

0

0 5

rs1

6 10

rs2

11 15

rd

16 20

func

21 31

For Type R instructions opcode field zero . . .

. . . operation specified using func field.

Used for arithmetic, logical, and move instructions.

Sometimes just two registers used, but func field needed for operation.

Examples

add r1, r2, r3 ! Add integer registers.
addf f1, f2, f3 ! Add FP registers, single precision.
addd f2, f4, f6 ! Add FP registers, double precision.
movi2s f1, r1 ! Move r1 to f1. (rs2 operand not used.)

05-11 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-11

05-12 05-12
Type R Examples

add r1, r2, r3 ! Add integer registers.
Type R

0

0 5

r2

2

6 10

r3

3

11 15

r1

1

16 20

add

21 31

addf f1, f2, f3 ! Add FP registers, single precision.

Type R

0

0 5

f2

2

6 10

f3

3

11 15

f1

1

16 20

addf

21 31

movi2s f1, r1 ! Move r1 to f1. (rs2 operand not used.)

Type R

0

0 5

r1

1

6 10

Unused

11 15

f1

1

16 20

movi2s

21 31

05-12 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-12

05-13 05-13

Type I:

Opcode

0 5

rs1

6 10

rd

11 15

Immediate

16 31

Used for loads, stores, some CTIs, and ALU immediate instructions.

Examples

addi r1, r2, #3 ! r1 = r2 + 3
lw r2, 10(r3) ! r2 = MEM[r3+10]
beqz r1, 20 ! if(r1 == 0) goto PC + 4 + 20 * 4 (rd unused).
jr r1 ! goto r1
jalr r1 ! r31 = pc + 4; goto r1

05-13 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-13

05-14 05-14
Type I Examples

addi r1, r2, 3 ! r1 = r2 + 3

addi

1

0 5

r2

2

6 10

r1

1

11 15

3

3

16 31

lw r2, 10(r3) ! r2 = MEM[r3+10]

lw

0x28

0 5

r3

3

6 10

r2

2

11 15

10

0xa

16 31

beqz r1, 20 ! if(r1 == 0) goto PC + 4 + 20 * 4 (rd unused).

beqz

0x1e

0 5

r1

1

6 10

Unused

11 15

20

0x14

16 31

05-14 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-14

05-15 05-15

Type J:

Opcode

0 5

Offset

6 31

Used for jump and jump & link.

Examples:

j 0x1234 ! goto PC + 4 + 0x1234 * 4
jal 0x1234 ! r31 = PC + 4; goto PC + 4 + 0x1234 * 4

j 0x1234 ! goto PC + 4 + 0x1234 * 4
j

0x30

0 5

0x1234

0x1234

6 31

05-15 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-15

05-16 05-16

Synthetic Instructions and DLX (NIB)

Misleading (in a nice way) assembly language mnemonics.

Implies a “new” opcode, but really uses an existing one.

Meant for programmer convenience.

Example, set register to zero:

clr r1 ! Synthetic instruction
add r1, r0, r0 ! True instruction (DLX)

Assembler generates a add r1, r0, r0 when it finds a clr r1 mnemonic.

Assembler “sees” synthetic instruction but processor only sees true instructions.

05-16 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-16

05-17 05-17Sample Synthetic Instructions (NIB)

No Operation:

nop ! Synthetic
add r0, r0, r0 ! DLX
bnez r0, 0 ! DLX

Register move:

movi2i r1, r2 ! Synthetic
add r1, r2, r0 ! DLX

Bitwise invert:

not r1, r2 ! Synthetic
xori r1, r2, #-1 ! DLX

05-17 EE 4720 Lecture Transparency. Formatted 11:41, 25 August 2000 from lsli05. 05-17

