
EE 4720 Homework 4 Due: 3 November 2000

Problem 1: Show a pipeline execution diagram for the execution of the DLX program below on
a single-issue statically scheduled (plain old chapter 3) fully bypassed implementation in which
the add functional unit is two stages (A1, A2) with an initiation interval of 2 (latency 3) and the
multiply unit is six stages (M1 through M6) with an initiation interval of 1 (latency 5). (This problem
is very similar to Spring 2000 homework 3 problem 1. Check the solution to that assignment only
if completely lost.)
addd f0, f2, f4
addd f6, f0, f8
addd f10, f12, f14
multd f16, f18, f20

Problem 2: Show a pipeline execution diagram for the execution of the DLX program below on
a single-issue statically scheduled fully bypassed implementation in which there are two add units,
both consisting of one stage with an initiation interval of 4 (latency 3, unpipelined). Use symbol A
for one adder and B for the other. The program below is slightly different than the one above.
addd f0, f2, f4
addd f6, f0, f8
addd f10, f12, f14
addd f16, f18, f20

Problem 3: Show a pipeline execution diagram for the execution of the DLX program below on
a two-way superscalar statically scheduled fully bypassed implementation in which there are two
add units, both consisting of one stage with an initiation interval of 4 (latency 3, unpipelined). Use
symbol A for one adder and B for the other.
LINE1: ! LINE1 = 0x1000
addd f0, f2, f4
addd f6, f0, f8
addd f10, f12, f14
addd f16, f18, f20

1



Problem 4: Show a pipeline execution diagram for the DLX code below executing on a processor
with the following characteristics:

• Statically scheduled two-way superscalar.

• Unlimited number of functional units.

• Six stage fully pipelined multiply.

• Can handle an unlimited number of write backs per cycle. (Unrealistic, but reduces adidactic
tedium.)

• Fully bypassed, including the branch condition.
The diagram should start at the first iteration and end after 30 cycles or until a repeating pat-

tern is encountered, whichever is sooner. Note that there is a floating-point loop-carried dependency
(f2). What is the CPI for a large number of iterations?

LOOP: ! LOOP = 0x1004
ld f0, 0(r1)
muld f2, f0, f2
addi r1, r1, #8
sub r2, r1, r3
bneq r2, LOOP
xor r10, r11, r12
and r13, r14, r15
or r16, r17, r18
sgt r19, r20, r21

Problem 5: Unroll and schedule the loop from the problem above for maximum efficiency. Unroll
the loop four times; the number of iterations will always be a multiple of four. Use software pipelin-
ing and take advantage of associativity to overlap the multiply latency. (In software pipelining a
computation is spread over several iterations.) Code may be added before the LOOP label.

2


