
Name

Computer Architecture

EE 4720

Midterm Examination

22 March 2000, 13:40–14:30 CST

Alias

Problem 1 (35 pts)

Problem 2 (20 pts)

Problem 3 (45 pts)

Exam Total (100 pts)

Good Luck!



Problem 1: The DLX implementation below has six stages. (The work done by ID is now done
by ID and RR.)

sign
ext.

Addr
6..10

11..15

16..20
or

11..15

IR

RR EX WBMEM

IR IR

A

B

IMM

ALU

=0

Addr

Data

Data

Addr D In

Addr

In

Mem

Out
B

ALU

MD

NPC

IR

IF

NPC

+4

PC

Mem
Port

Addr

Data IR

NPC

IMM

Control

ID

(a) The execution of some code on this pipeline is shown below. Add exactly the bypass paths
needed so that the code executes as illustrated. Next to each bypass path indicate the cycle(s) in
which it will be used. (Do not add bypass paths that won’t be used in the execution of the code
below.) (10 pts)

! Cycle 0 1 2 3 4 5 6 7 8
add r1, r2, r3 IF ID RR EX ME WB
lw r5, 10(r1) IF ID RR EX ME WB
xor r4, r1, r2 IF ID RR EX ME WB
and r6, r5, r4 IF ID RR EX ME WB

(b) Show the execution of the code below on this pipeline until bneq reaches IF a second time. The
branch is taken. Be sure to base the CTI behavior on the hardware shown above. Show where
instructions are squashed. (10 pts)

LOOP:
! Branch Taken.
bneq r1, SKIP
add r2, r3, r4
sub r5, r6, r7
and r8, r9, r10
or r11, r12, r13

SKIP:
j LOOP
add r2, r3, r4
sub r5, r6, r7
and r8, r9, r10
or r11, r12, r13

2



Problem 1, continued: The figure and code below are identical to the ones on the previous
page.

(c) Add branch and jump hardware so that the code executes as quickly as possible. Additional
adders can be used, the fewer the better. Branches and jumps can be handled separately. The
register file cannot be moved or duplicated and cannot be read before the RR stage. (Jumps and
branches both use displacement addressing. In branches the displacement is in bits 16 to 31 and
in jumps the displacement is in bits 6 to 31. Do not show control hardware.) (10 pts)

sign
ext.

Addr
6..10

11..15

16..20
or

11..15

IR

RR EX WBMEM

IR IR

A

B

IMM

ALU

=0

Addr

Data

Data

Addr D In

Addr

In

Mem

Out
B

ALU

MD

NPC

IR

IF

NPC

+4

PC

Mem
Port

Addr

Data IR

NPC

IMM

Control

ID

(d) Show how the code below executes on the modified pipeline. As before, show execution until
bneq enters IF a second time. (5 pts)

LOOP:
! Branch Taken.
bneq r1, SKIP
add r2, r3, r4
sub r5, r6, r7
and r8, r9, r10
or r11, r12, r13

SKIP:
j LOOP
add r2, r3, r4
sub r5, r6, r7
and r8, r9, r10
or r11, r12, r13

3



Problem 2: The code below executes on a dynamically scheduled processor that uses reorder buffer entry numbers to name registers.
There are 128 reorder buffer entries, the next free entry is #1.

(a) Show when each instruction commits and show the contents of the register map, register file and reorder buffers using the space
provided. Show only the instruction line numbers (A, B, C, D) in the reorder buffer. Indicate cycle numbers above the reorder buffer.
(10 pts)

Pipeline Execution Diagram

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A:addd f0, f2, f0 IF ID A0 A1 A2 A3 WB

B:addd f6, f0, f6 IF ID RS RS RS A0 A1 A2 A3 WB

C:addd f0, f0, f6 IF ID RS RS RS RS RS RS A0 A1 A2 A3 WB

D:addd f6, f2, f8 IF ID A0 A1 A2 A3 WB

Register Map

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val. or ROB#

f0 10

f2 20

f6 60

f8 80

Register File

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val.

f0 10

f2 20

f6 60

f8 80

Cycle:

Reorder buffer:

4



Problem 2, continued: (b) The code below is identical to the code above, however the second add instruction raises an exception in
cycle 9 (indicated by a star). Complete the pipeline execution diagram and other tables for this situation for the instructions shown.
(Do not show the trap handler.) Show the contents of the reorder buffers after each change. (10 pts)

Pipeline Execution Diagram

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A:addd f0, f2, f0 IF ID A0 A1 A2 A3 WB

B:addd f6, f0, f6 IF ID RS RS RS A0 A1 A2 *A3*

C:addd f0, f0, f6 IF ID RS RS RS RS RS RS

D:addd f6, f2, f8 IF ID A0 A1 A2 A3 WB

Register Map

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val. or ROB#

f0 10

f2 20

f6 60

f8 80

Register File

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val.

f0 10

f2 20

f6 60

f8 80

Cycle:

Reorder buffer:

5



Problem 2: Answer each question below.

(a) Why do DLX Type-R instructions have a func field? (7 pts)

Type R:

Opcode

0

0 5

rs1

6 10

rs2

11 15

rd

16 20

func

21 31

(b) Would there be any advantage in pipelining the integer ALU used in the statically scheduled
DLX implementation? Explain. (7 pts)

(c) Why do ISAs include one-byte integers? (What are the advantages of using them when running
on typical implementations.) (7 pts)

6



(d) The DLX implementations covered in class start reading registers before the instruction is
decoded. Why is this possible? Modify the instruction codings so that it is no longer possible.
That is, with the modified codings decoding would have to be performed before register read (as
in problem 1). (8 pts)

The DLX codings are given below for reference and can be used to explain your answer.

Type R:

Opcode

0

0 5

rs1

6 10

rs2

11 15

rd

16 20

func

21 31

Type I:

Opcode

0 5

rs1

6 10

rd

11 15

Immediate

16 31

Type J:

Opcode

0 5

Offset

6 31

7



(e) Ignoring floating-point instructions, how can precise exceptions be implemented on the statically
scheduled (Chapter 3) DLX implementation? Illustrate your answer with an example in which
exceptions occur out of order but are handled in order. Show the code and a pipeline execution
diagram, indicate where the exceptions are occurring. (9 pts)

(f) What is an advantage of a stack ISA over a RISC ISA? What is a disadvantage of a stack ISA
over a RISC ISA? (7 pts)

8


