03-1 Instruction Set (ISA) Design and Addressing Modes 03-1

Material from sections 2.1, 2.2, and 2.3.

Outline

ISA Design Choices

It’s more than just picking instructions.

Example: Easy ISA Design
See the big picture before being inundated with details.

ISA Design Choice Details

Screw up, and you’ll be cursed for decades.

03_1 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_1

03-2 . . . 03-2
ISA Design Decisions

I. Organization
A. Data types (supported by ISA).
B. Memory and register organization.

C. Addressing modes.

II. Instruction Choices
A. Data movement instructions.
B. Arithmetic and logical instructions.
C. Control transfer instructions (CTIs). (Branch, jump, call, return.)

D. Process and processor management instructions.

III. Instruction Coding

03_2 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_2

03-3 03-3

Easy ISA Design

Goal: Design easy-to-understand but not-necessarily-good ISA.

Use ISA design steps above.

I.A., Data Types
Hmmm.... 8-bit integer, 16-bit integer,. .., 256-bit complex double,. ..
To keep it simple just use two types:
64-bit integer

64-bit floating-point

03_3 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_3

0 03-4

3_41.B., Memory and Register Organization
First, Memory: The Questions
What address space size? That is, how many possible memory addresses?

What character size? That is, how many bits per location?

The Answers
Choose common address space size: 64 bits or 264 = 18446744073709551616' locations.
Note: implementation does not need to provide that much memory!!

Choose common character size: 8 bits.

Comments
Address space size usually matches fastest integer size.

Data type sizes should be multiple of character size ...
. e.g. 64-bit integer equals 8 characters.

! Eighteen quintillion, four hundred forty-six quadrillion, seven hundred forty-four trillion, seventy-three billion,
seven hundred nine million, five hundred fifty-one thousand, six hundred sixteen.

03_4 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_4

03-5
[.B., Memory and Register Organization, Continued
Second, Registers
How many?

Choose 128. (Many systems have 64.)

What size?

They should be sized for the data types, so 64 bits.

Restrictions

Could restrict floats to so-called floating-point registers.

Could specify a special index register for memory addressing.

But we won’t. Any register can be used for anything!

03_5 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-5

03-5

03-6 03-6
I.C., Addressing Modes
In case anyone forgot. ..

Addressing Mode: method used by an instruction to find source (operand) values and
where to put destination (operand) value.

Consider:

add r1, [r2+4], 12 ! r1l = Mem[r2+4] + 12

Destination operand, r1, indicates result written to register ri.
First source operand, [r2+4], in memory at address r2+4.

Second source operand, 12, is part of instruction.

03_6 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_6

03-7
I.C., Addressing Modes, Continued
Data can be located in the instruction, a register, or memory.
If data in instruction (immediate data) we need to choose:
Type of immediate. (Usually a signed or unsigned integer.)

Size of immediate. (Big ones force design compromises.)

If data in register, not much to choose. (For simple design.)

If data in memory, need to specify how address computed.

03_7 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-7

03-7

03-8
I.C., Addressing Modes, Continued
For immediate addressing choose 20-bit signed integers.

It’s possible to use more than one size or type, but we won't.

For memory addressing use two modes in Easy ISA:
Displacement: address is register value plus 64-bit constant (displacement).

Register indirect: address is register value.

Examples
add ri1, ri1, 10 ! Last operand immediate.
add r2, r2, 10.3 ! ERROR: Immediate should be integer.
add 13, r3, [r4+20] ! Displacement addressing.
add rb5, r5, [r4] | Register indirect.

03_8 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-8

03-8

03-9 03-9
I.C., Addressing Modes, Continued
Need to choose which instructions use which addressing modes.
For simplicity, use addressing mode wherever it makes sense.

Discussed further below.

03_9 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_9

03-10 03-10
IT.A., Data Movement Instructions
These instructions move data between registers to memory.
Often provided by special 1load and store instructions.

To keep things simple use arithmetic instructions for data movement:

add r1, [r2], O ! rl = Mem[r2] + O (Don’t need a load instruction.)
add [r2], r3, 0 ! Mem[r2] = r3 + 0 (Don’t need a store instruction.)

03_10 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_10

03-11 03-11
I1.B., Arithmetic and Logical Instructions.
Hmmm. .. add, sub, ... cos, harcsin, gamma,...
To keep things simple choose integer and float add and subtract:
add (desto) (sl) (s2) (Integer add.)
addf (desto) (sl) (s2) (Floating-point add.)
sub (desto) (sl) (s2) (Integer subtract.)
subf (desto) (s1) (s2) (Floating-point subtract.)

... Where ...
... (desto) uses register or any memory addressing mode ...

... and (s1) and (s1) use any addressing mode.

03_ 11 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_ 1 1

03-12
II.B., Control Transfer Instructions (CTTI).
CTI refers to jumps, branches, procedure calls, returns.
To keep things simple in Easy ISA, one CTT:

b (cond) (return) (target)...

... where (cond) is a register, if contents non-zero branch taken ...

. (return) is a register, PC placed in (return) if branch taken ...
... (target) is a 64-bit immediate, the address to branch to.

Notes

This single instruction can implement procedure calls and returns.

The size of the (target) field is unrealistic.

03_12 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-12

03-12

03-13 03-13
II.B., Control Transfer Instructions (CTTI).

Example:

sub rl1, r2, 123 I Put branch condition in ril
b rl, r120, 0x12345 ! If r1 != 0 branch to 0x12345 and
put return address in r120.

03_13 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_13

03-14 03-14
I1.C., Process Control Instructions

Don’t include any, assume programmers honest and don’t make mistakes.

03_14 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_14

03-15 03-15
III Instruction Coding
Goal: Determine binary format for instructions.
Steps
1 Determine which instructions similar, place into groups.
2 Assign numbers to opcodes so group-mates share a prefix (first few bits).
3 If necessary, assign numbers to operand types and addressing modes.

4 Decide where to place operand fields.

03_15 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_15

03-16 03-16
IIT Instruction Coding, continued
Step 1, divide into groups.
Two groups, arithmetic and branch:

Arithmetic instructions in one group because all have 3 operands and use the same addressing
modes.

Step 2, assign numbers (codes) to opcodes.

Instruction Group Coding (Binary)
b Branch 1

add Arithmetic 000

addf Arithmetic 001

sub Arithmetic 010

subf Arithmetic 011

Note: the first bit of the coding identifies group.

Note: no room to add new opcodes. (Bad).

03_16 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_16

03-17 03-17
IIT Instruction Coding, continued
Step 3, if necessary, assign numbers to operand types and addressing modes.
It’s not necessary for the branch because only one possible type for each operand.
It is necessary for the arithmetic instructions.

Type (Addr. Mode) Type Coding Operand Contents Operand Size

Register 00 Register num. 7
Immediate 01 20 bit signed int. 20
Displ. 10 64 bit and reg. num. 71
Reg. Indirect 11 Register num. 7

03_17 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_17

03-18
Step 4, decide where to place operand fields.
For decodability, operand type must precede operand.
For simplicity, put in same order as instruction.
Format for branch instruction (the easy one):

Opcode Cond Return Target

1
0 1 78 14 15 78

Note that size of this instruction fixed.

03_18 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-18

03-18

03-19 03-19
Step 4, decide where to place operand fields, continued.

Format for arithmetic instructions:

Opcode Type Dest Type Source 1 Type Source 2
0 | | |
0 2 3 4 5

Note that size can vary.

Cannot determine end of “Dest” field and following fields without knowing type.

03_19 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_19

03-20 03-20
Instruction Examples
LINE1: I LINE1 = 0x12345
sub r1, [r2+8], 123 | Put branch condition in ri
b rl, r120, LINE1 I If r1 '= 0 branch to 0x12345 and
! put return address in r120.
sub Type rl Type r2 8 Type 128
010 OO| 1 10| 2| 0x8 01| 0x7b
023 4 5 11 12 13 14 20 21 83 84 85 86 105
Instruction length 106 bits or 13 bytes plus 2 bits, 6 bits go unused.
b ril r120 LINE1
1 1 0x78 0x12345
0 1 78 14 15 78
Note: 12010 = 7816.
Instruction length 79 bits or 7 bytes plus 7 bits, 1 bit goes unused.
03_20 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_20

03-21 03-21
Easy ISA Summary
64-bit integer
64-bit floating-point
64-bit address space.
8-bit characters.
128, 64-bit registers.
Immediate addressing using 20-bit signed integers.
Displacement addressing with 64-bit offsets.
Register indirect addressing.
Arithmetic Instructions: add, addf, sub, subf.

CTI Instruction: b.

03_21 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_21

03-22
Critique of Easy ISA
Major, indisputable, problems with Easy ISA:
Many useful instructions omitted and no room to add new ones.
Branch instruction too large (because of large target address).
Constant for indexed addressing too large (64 bits), wasting size.
Instructions may not be multiple of byte, wasting space.

The hardware to handle 64-bit offsets (for indexed addressing) ...
... could be used to handle 64-bit immediates ...

... but ISA specifies 20-bit immediates. (Why not add a second immediate size.)

No behavior specified for immediate used as a destination.

Cannot branch to an address held in a register (without using self-modifying code).

03_22 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-22

03-22

03-23 03-23
Additional problems from 1990’s perspective:
Instruction size varies, difficult to “fetch ahead”.

Arithmetic instructions access memory, complicating implementation.

03_23 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_23

03-24 ISA Design Choice Details 03-24

Outline

Data Types

Memory and Register Organization
ISA Classification

Addressing Modes

Displacement and Immediate Sizes

03_24 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_24

03-25 Data Types 03-25

To include a new data type:
Determine its size.
Define operations.

Add new instructions to operate on it.

03_25 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_25

03-26 03-26
Data Types for Simple 32-bit Machine

Type Special Instructions

32-bit signed integer

32-bit unsigned integer addu

16-bit signed integer 1h, load half-word.

16-bit unsigned integer 1hu, load half-word unsigned.

8-bit signed integer 1b, load byte.
8-bit unsigned integer 1lbu, load unsigned byte.
32-bit float addf, add 32-bit floating-point.

64-bit float (double) addd, add 64-bit floating-point.

Signed integer types operated on by integer arithmetic instructions.
Unsigned integers operated on by logical and unsigned integer arithmetic instructions.
The basic 32-bit load instruction not appropriate for smaller types.

The 1h, 1hu, 1b, and 1bu instructions ...
... place data in low portion of 32-bit registers ...
... and place zeros or a sign bit high portion.

03_26 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_26

03-27 03-27
Data Type Tradeofts
Possible benefit of a new data type.

Using one of the new instructions faster than many old instructions.

Possible drawbacks of a new data type.

Execution not much faster because ...
... data type is used infrequently or ...
... execution using other instructions nearly as fast.

More performance would be obtained if chip area used for new instructions was used else-
where.

03_27 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_27

03-28 03-28
Data Type Tradeoff Examples
Start with integer-only ISA.
Example of a good new data type: floating-point.
FP hardware many times faster than software.

Floating-point arithmetic used frequently in many programs.

03_28 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_28

03-29 03-29
Example of a bad new data type: time.

Detail of time data type:
Size 64 bits. (The number of seconds since 1970 UTC, avoid Y2.038k [s4G?] problem.).

Some Instructions:

t.add.day (sumtime) (time) (days) ...
... All operands are registers. ...

... Add (days) days (an integer) to (time) (a time), store result in (sumtime).

t.to.dom (dom) (time) ...
... All operands are registers. ...

... Store the day of month (integer) for time (time) in register (dom).

t.diff (diff) (timel) (time2) ...
... All operands are registers. ...
... Store the difference between (timel) and (time2) in (diff).

03_29 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_29

03-30 03-30
Problems with time data type.
Instructions would not be used often enough.
Possibly not much faster.
Complex control, about the same as transcendental functions (sin, etc.).

Therefore chip area and unused opcodes should be used for other new data types.

03_30 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_30

03-31 Overview of Popular Data Types 03-31

Common Data Type Sizes
Type usually specified with a size.
e Byte, char, octet. 1 byte (8 bits here).
e Half word. 2 bytes.
e Word. 4 bytes.
e Doubleword. 8 bytes.

e Quadword. 16 bytes.

03_31 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_31

03-32 03-32
Common Types and Sizes
e Unsigned integer and integer. Byte, half word, word, doubleword.
Used for address computation and throughout programs.
Integer size (along with address space) defines ISA size: 32-bit, 64-bit, etc.

Integers are sign-extended when moved into a larger register ...

... while unsigned integers are not.

e Floating-point. Word, doubleword, quadword.

Most newer machines use the IEEE 754 format.

03_32 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_32

03-33 03-33
e Packed BCD. Word, etc.
Each word holds several BCD digits of a fixed-point number.
E.g., word holds a 8-digit BCD integer.
Decimal fractions such as .03 exactly represented.
Used for financial computations, typically in Cobol programs.

Used primarily in older architectures.

e Packed integer, packed fixed-point. Word, double word.
Holds several small integer or fixed-point values.
Operated on by saturating arithmetic instructions.

Used by packed-operand instructions which operate on each small value in parallel.

Used in newer ISA versions. F.g., Sun VIS, Intel MMX, HP PA MAX.

03_33 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_33

03-34 Integer, Packed BCD, and Packed Integer Example 03-34

Consider integers 1239;¢ and 56781.

As half-word-size (short) integers: ...

Sign Short Int.
... 123919 = 0x044d7 = 0 0x04d7 | (in 32-bit register) and ...
31 16 15 0
Sign Short Int.
... 96781p = 0x162e = 0 0x1628
31 16 15 0

As packed BCD integers:

MSD LSD

123919 = 0x1239 = 0 0 0 0 1
31 28 27 24 23 2019 16 15 12 11 &8 7 4 3

MSD LSD

567819 = 0x5678 = 0 0 0 0 5 6 7
31 28 27 24 23 2019 16 15 12 11 8 7 4 3

03_34 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_34

03-35

03-35

Consider two lists of integers: {1,2,3,9} and {5,6,7,8}.

As packed 4-bit unsigned integer (8 4-bit numbers per word):

03-35

{1,2,3,9} = 0x1239 =

{5,6,7,8} = 0x5678 =

0 0 0 0 1 2 3
31 28 27 24 23 2019 16 15 12 11 &8 7 4 3

0 0 0 0 D 7
31 28 27 24 23 2019 16 15 12 11 &8 7 4 3

EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-35

03-36 Examples of Packed Data Types 03-36
Addition: Integer Packed BCD Packed Int.
0x04d7 0x1239 0x1239
+ 0x162e + 0x5678 + 0x5678
0x1b05 0x6917 0x68af
= 69171 = 69171 ={6,8,10,15}
Sign Short Int.
0x1b05= 0 0x1b05
31 16 15 0
MSD LSD
0x6917 = 0 0 0 0 6

31 28 27 24 23 2019 16 15 12 11 &8 7 4 3

0x68af = 0 0 0 0 6 8 a f
31 28 27 24 23 2019 16 15 12 11 8 7 4 3 0

Addition of packed integers is saturating: ...
... result is maximum value if sum exceeds maximum value.

For example, 12 + 8 = 15, assuming 15 is the maximum value.

03_36 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_36

03-37 Data Type Usage 03-37

Data below for SPEC92 programs on VAX.

Double word 0%
] 69%
Word 74%
P 3%
Half word 19%
0%
Byte 7%
0%
0% 20% 40% 60% 80%

Frequency of reference by size

| o Integer average m Floating-point average I

FIGURE 2.16 Distribution of data accesses by size for the benchmark programs.

03_37 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_37

03-38 03-38
Size Tradeoffs

Integer: size of fastest integer (usually) equals address size.
E.g., word on a 32-bit machine, doubleword on a 64-bit machine.

On most machines a smaller integer saves space, but not time.

Floating-point: doubleword usually best choice.

Word may be faster, but can be slower ...

... when double result must be rounded to word size.

03_38 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_38

03-39 ,
Data Type Coding

How data coded:

In opcode. (Used in many ISAs.)

Integer multiply instruction, floating-point add.

In instruction’s type field. (Used in many ISAs.)
Tagged, type specified in data. (Used in a few ISAs.)
Suppose data type were word-sized, ...
... 30 bits might hold the number ...
... 2 bits would indicate what type the data was ...

... such as integer, unsigned integer, float, or string.

03_39 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-39

03-39

03-40 Memory and Register Organization

Consider: ADD (sum)=(opl)+(op2)
Operands (opl) and (op2) can refer to:
e A Constant (Immediate)

e Something Written Earlier

Since “Something Written Earlier” is part of instruction ...

... the ISA must define names for that storage.

Since storage defined by ISA it’s called architecturally visible storage.

Common types of architecturally visible storage:

e Registers

Sometimes there are multiple sets.

e Memory

Sometimes there are multiple address spaces.

Other types are less common.

03_40 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-40

03-40

03-41 03-41

What ISA Defines for Architecturally Visible Storage

e Names.

For registers, r1, £30, gb. For memory, 53023.

e Result of writing and reading storage.

For systems covered in this class result is obvious (value read is last value written).

Not obvious with multiple readers and writers.

03_41 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_41

03-42 . 03-42
Registers and Memory

Registers (Internal Storage)

Store what is actively being worked on.

E.g. Math expression parts, array indices.
Implemented using highest speed memory.

Given short names.

E.g. r1, gi, AL.

Small number of registers provided.
E.g. 32, 64.

Goal: fastest access.

03_42 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_42

03-43 03-43
Memory
Stores code and data.

Simple to programmer ... despite complex implementation.

Large number of locations, 23? = 4294967296 and
204 = 18446744073709551616 are common.

2128 — 340282366920938463463374607431768211456 2 is a long way off or may never be used.

Named using integers called addresses. . .
... and some address space identifier.

Goal: large size.
Rule of thumb: address space needed grows by one bit per year.

Very difficult to change ISA’s address space size ...
... 80 chosen to be much larger than contemporary needs.

2 Three hundred forty undecillion, two hundred eighty two decillion, three hundred sixty six nonillion, nine hundred
twenty octillion, nine hundred thirty eight septillion, four hundred sixty three sextillion, four hundred sixty three
quintillion, three hundred seventy four quadrillion, six hundred seven trillion, four hundred thirty one billion,
seven hundred sixty eight million, two hundred eleven thousand, four hundred fifty six.

03_43 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_43

03-44 . 03-44
Memory Addressing

Address Interpretation
Sequence of memory locations (usually bytes) starting at address.
Size of sequence depends upon instruction.
E.g., DLX 1w, load word, instruction reads four bytes.

E.g., DLX 1b, load byte, instruction reads one byte.

Example:

lw rl, 0(r2) ! Load rl with 4 bytes starting at addr. in r2.
1b 13, 0(r2) ! Load r3 with byte at address in r2.
! Register r1 = r3 if rl < 128 and rl1 > O.

03-44

EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_44

03-45
Alignment

Addresses may be subject to alignment restrictions. . .

...when used in certain instructions.

E.g., a word-aligned address must be divisible by 4 (usual word size).

Example.

! In an unaligned ISA both instructions can execute.

! In an aligned ISA at most one could execute, the other would
! cause an error (memory access violation exception).

lw ri1, 0(r2) I Load rl1 with data at address r2.

lw r3, 1(r2) | Load r3 with data at address r2 + 1.

03-45

EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-45

03-45

03-46 .
Common Addressing Modes

Addressing modes used by many ISAs.

Register

Data in register.

Move r4, r3 ' r4 = r3 Data in r3.
add r4, r2, r3 ! r5 r2 + r3 Data in r2 and r3.

Useful when data recently produced and is still in register.

All ISAs with registers have register addressing.

03_46 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-46

03-46

03-47

Immediate

Data in instruction.

Move r4, #3 I r4 = 3. Data, 3, in instruction.
add r4, r2, #3 ! r4

r2 + 3. Data, 3, in instruction.

All ISAs have some form of immediate addressing.

ISA design parameter: immediate size (maximum immediate value).

03_47 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-47

03-47

03-48 03-48

Common Memory Addressing Modes

Memory Addressing Modes
With memory addressing modes data is in memory.
Modes specify an effective address, the memory location at which data located.

There are many ways to specify a memory address:

Direct

Effective address is a constant.

load r1, (1024) I r1l
add r4, r2, (1024) ! r4

MEM[1024] Data at 1024.
r2 + MEM[1024]

The add instruction could not be in load/store ISA.
ISA may need large instructions to accommodate the address.

Included in ISAs with variable instruction sizes.

03_48 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_48

03-49 03-49

Register Deferred or Register Indirect

Effective address in register.

MEM[r1]
r2 + MEM[r1]

Load r4, (r1) I rd
add r4, r2, (r1) ! r4

Note: the add instruction could not be in load/store ISA.

Included in most ISAs.

03-49

03_49 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-50 03-50
Displacement
Effective address is register plus constant.
Load r4, 100(r1) ' r4 = MEM[r1 + 100]

Useful for accessing elements of a structure:

' In c: struct { int i; short int j; unsigned char c; } str;

I vl = &str;

lw r2, 0(r1l) I (load word) r2 = str.i;

1h 13, 4(r1) ' (load half) r3 = str.j;

lbu r4, 6(r1) ! (load byte unsigned) r4 = str.c;

03_50 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_50

03-51 03-51
Displacement, continued.

Useful in ISAs without direct addressing and short immediates.

I 1w r1, (0x12345678) ! Alas, no such instruction in DLX.
lhi r2, #0x1234 ! Load high part of r2: r2 = 0x12340000
lw r1l, 0x5678(r2) I r1 = MEM[0x5678+r2] = MEM[0x12345678]

ISA design parameter: displacement size.

Included in most ISAs.

03_51 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_51

03-52
Indexed
Effective address is sum of two registers.
Load r4, (ri+r2) ' r4 = MEM[rl1 + r2]
Useful for array access. (r1 address of first element.)

Included in most ISAs.

Memory Indirect
Address of effective address is in register.

Load r1,0(r3) ! r1 = MEM[MEM[r3] 1].

Useful for dereferencing: i = *ptr
Included in some ISAs.

Others omit it since two loads would be as fast.

03_52 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-52

03-52

03-53
Autoincrement
Perform register indirect access, then add constant to register.
Load r1,(r2)+ ! r1 =MEM[r2]; r2 =1r2 + 1
Useful for loops.

Included in some ISAs.

Autodecrement

Subtract constant from register then perform register indirect access.

Load r1,-(r2) ! r2=r2 -1; r1 = MEM[r2];
Useful for loops.

Included in some ISAs.

03_53 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-53

03-53

03-54 03-54

Scaled

Effective address is constantl + regl + reg2 * constant2.
Load r1,100(r2)[r3] ' r1l = MEM[100 + r2 + r3 x d]
Useful for array access.

Included in some ISAs.

There’s no limit to how many addressing modes one could think of.

03_54 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_54

03-55 03-55

Memory Addressing Choices in ISA Design

Which addressing modes?

Affects cost and may limit future performance.

Which instructions get which addressing modes?

Affects cost and may limit future performance.

Maximum displacement size?

Limited by instruction size.

Maximum immediate size?

Limited by instruction size.

03_55 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_55

03-56

03-56

Usage of Addressing Modes

Do we really need all those addressing modes?

Memory Addressing Usage in VAX Code.

Memory indirect

Scaled

Register deferred

Immediate

Displacement

FIGURE 2.6 Summary of use of memory addressing modes (including immediates).

TeX
spice
gcc

TeX
spice
gcce

TeX
spice
gcc

TeX
spice
gcce

TeX
spice
gcce

16%

24%

. 3%
11%

43%

_ 17%
39%

32%

40%

55%

0% 10% 20% 30% 40%

Frequency of the addressing mode

EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

50%

60%

03-56

03-56

03-57 ,
Usage of Addressing Modes

Do we really need all those addressing modes?
Memory Addressing Usage in VAX Code.

VAX uses all of addressing modes described earlier.

Memory indirect
Scaled
Register deferred
Modes used less than 1% of time omitted.

Immediate

Displacement

Large differences between programs.

Since a few modes account for most accesses ...

TeX
spice
gce

TeX
spice
gce

TeX
spice
gce

TeX
spice
gce

TeX
spice
gce

40%

n n n L L s
0% 10% 20% 30% 40% 50% 60%

Frequency of the addressing mode

FIGURE 2.6 Summary of use of memory addressing modes (including immediates).

... others could be omitted with little impact on performance .

... saving silicon area (but programs would have to be rewritten).

03_57 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-57

03-57

03-58 Displacement Sizes 03-58

What should the maximum displacement size be?
Too large: difficult to code instruction.

Too small: won’t be very useful.
Displacement Size in SPECint92 and SPEC{p92 Programs on MIPS.

Wide range of displacements used.

1 Integer average

25% \
Floating-point average
20% - 9P g9e n

perenage o \
1 A el A |
R U)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Value

FIGURE 2.7 Displacement values are widely distributed.

03-58

EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_58

03-59

03-59

Displacement Size in SPECint92 and SPEC{p92 Programs on MIPS.

Percentage of
displacement

30%

25%

20%

Floating-point average o

FIGURE 2.7 Displacement values are widely distributed.

03-59

EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_59

03-60 , ,
Immediate Sizes

What should the maximum immediate size be?
Too large: difficult to code instruction.

Too small: won’t be very useful.

Immediate Sizes in VAX Code

60%

Smaller values used more frequently.

50% [gee
40%

b ANA
20% /

web A AN e

0%

0 4 8 12 16 20 24 28 32

Number of bits needed for an immediate value

FIGURE 2.9 The distribution of immediate values is shown.

03_60 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-60

03-60

03-61

03-61

60%

50%

40%

30%

20%

10%

0%

Number of bits needed for an immediate value

FIGURE 2.9 The distribution of immediate values is shown.

03-61

EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-61

03-62 o ,
Specifying Register Operands

Registers can be specified explicitly in instructions ...

add rl1, r2, r3

... but some ISAs allow them to be specified implicitly ...

... that is, there is no need to specify a register number for some operands ...

... because the instruction will always use a particular register.
Two Common Cases
Accumulator: A register for holding results.

Stack: A set of registers (and memory).

03_62 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03.

03-62

03-62

03-63 03-63
Accumulator

ISA specifies a special accumulator register . ..

... for example, ra.

Arithmetic instructions use accumulator for destination and for one source operand.
For example: add r4 'ra = ra + r4

Advantage: Smaller instruction coding possible.

Disadvantage: “Extra” instructions needed to move data in and out of accumulator.

03_63 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_63

03-64 03-64
Stack
Registers organized as stack. Stack may extend into memory.
Most instructions read top one or two elements.

Example: Use register names: r1, r2, r3, with r1 top of stack, etc.

I Before r1 =1, r2 =2, r3, =4, r4 = 8
add I Pop top two elements off stack, add, push sum on stack.
I After r1 = 3, r2 =4, r3, = 8

Special Stack Machine Instructions
push (addr) Read memory at (addr) and push on stack.

pop (addr) Pop data off stack and write to memory at (addr).

Advantage: Very short instructions possible.

Disadvantage: Some code requires extra instructions.

03_64 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_64

03-65 03-65

Miscellaneous Variations

Operands per Instruction
Three typically used.
Two sometimes used.
Factors:

Instruction coding (bits to specify operands).

03_65 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_65

03-66 03-66
Addresses per ALU Instruction
Zero typically used (load/store).
One, two, even three sometimes.
Factors

Instruction coding.

(Addresses take up lots of space.)

Benefit over multiple instructions.

03_66 EE 4720 Lecture Transparency. Formatted 13:30, 26 January 2000 from Isli03. 03_66

