
EE 4720 Homework 4 Solution Due: 17 April 2000

Problem 1: The diagram below shows the execution of code on a dynamically scheduled machine
that uses physical register numbers to name destination operands. Show the state of the ID register
map, the commit register map, their free lists, and the physical register file for each cycle of the
execution below. In the register maps and file show only values related to registers f0 and f3.
Initially, f0=0, f1=10, f2=20, etc. Initially, register f0 is assigned to physical register 12 and f3
is assigned to physical register 15 (ignore the other architected registers). Initially, both free lists
contain physical register numbers {7, 8, 9, 10, 11}.

Note: As originally assigned the initial free lists did not contain register 11 and the pipeline
execution diagram showed reservation station (RS) segments. Both were mistakes and have been
corrected.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
multf f0, f1, f2 IF ID Q M0 M1 M2 M3 M4 M5 WC
addf f3, f0, f2 IF ID Q A0 A1 WC
subf f0, f4, f5 IF ID Q A0 A1 WB C
addf f3, f0, f5 IF ID Q A0 A1 WB C
addf f0, f2, f1 IF ID Q A0 A1 WB C

The solution appears below. Blank entries in the tables below indicate that the value has not changed. The free
lists (shown in braces, or curly brackets) are for the cycle in which the opening brace appears. For example, in cycle 3 the
ID free list is 10,11 and the completion free list is 7,8,9,10,11 (because there was no change since cycle 0). The
row in which a free list appears is not significant, there is only one ID free list and one completion free list.

1



! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
multf f0, f1, f2 IF ID Q M0 M1 M2 M3 M4 M5 WC
addf f3, f0, f2 IF ID Q A0 A1 WC
subf f0, f4, f5 IF ID Q A0 A1 WB C
addf f3, f0, f5 IF ID Q A0 A1 WB C
addf f0, f2, f1 IF ID Q A0 A1 WB C

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
! ID Register Map
! f0 12 7 9 11
! f3 15 8 10
! ID Free List
! {7,8,9,10,11} {} {12} {12,15}
! {8,9,10,11} {12,15,7}
! {9,10,11} {12,15,7,8}
! {10,11} {12,15,7,8,9}
! {11}
! Commit Register Map
! f0 12 7 9 11
! f3 15 8 10
! Commit Free List
! {7,8,9,10,11} {8,9,10,11,12}
! {9,10,11,12,15}
! {10,11,12,15,7}
! {11,12,15,7,8}
! {12,15,7,8,9}
!
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
!
! Physical Register File
! 7 200
! 8 220
! 9 -10
! 10 40
! 11 30
! 12 0
! 13
! 14
! 15 30
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2



Problem 2: Repeat the problem above assuming that there is an exception in stage A1 of the
execution of addf f3, f0, f5, as shown below: The solution can start at the cycle in which the
tables will differ from the solution above.

The solution appears below. The exception is not handled until the instruction reaches completion, at cycle 17. (So
the solution below is identical to the one above up to cycle 17.) At cycle 17 the controller recovers from the exception by
copying the completion map and completion free list to the ID map and free list. The diagram below shows this recovery
being done in one cycle, but real system might take longer. Because the add encountered an exception the value it writes
into the register file may not be valid, that is indicated by question marks.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
multf f0, f1, f2 IF ID Q M0 M1 M2 M3 M4 M5 WC
addf f3, f0, f2 IF ID Q A0 A1 WC
subf f0, f4, f5 IF ID Q A0 A1 WB C
addf f3, f0, f5 IF ID Q A0*A1*WB Cx
addf f0, f2, f1 IF ID Q A0 A1 WB

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
! ID Register Map
! f0 12 7 9 11 9
! f3 15 8 10 8
! ID Free List
! {7,8,9,10,11} {} {12} {12,15}
! {8,9,10,11} {12,15,7}
! {9,10,11} {10,11,12,15,7}
! {10,11}
! {11}
! Commit Register Map
! f0 12 7 9
! f3 15 8
! C Free List
! {7,8,9,10,11} {8,9,10,11,12}
! {9,10,11,12,15}
! {10,11,12,15,7}
!
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
!
! Physical Register File
! 7 200
! 8 220
! 9 -10
! 10 ?40?
! 11 30
! 12 0
! 13
! 14
! 15 30
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3



Problem 3: The diagram below, of a dynamically scheduled processor, omits hardware that checks
whether the register map should be updated in the WB stage. (The hardware was described in
class.) Add the hardware to the diagram (at the same level of detail as other parts of the diagram).

Solution diagram not yet available.

6..10

11..15

Addr

Addr

Data

Data

Addr

D In

Val.

ROB #

Val.

ROB #

ROB #

Dest

Addr

D In
Val.

Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

P
C

D
est

IR
*

S
t: C

,X
V

al.
0,0

ROB #

St: C,X
Val.

Dest

Addr

D In

R
eo

rd
er

 B
uf

fe
r

Addr

D In

Reg. File

N
ull

Val.

Dest

Control

Control
ROB #

Op, RS

Dest

Common Data Bus (CDB)

RS’s

RS’s

Int. Unit

FP Add
Unit

New
ROB #

tail

head

WB

WB

C

ID

ID

ID

IDIF

EX WB

4



Problem 4: Draw a pipeline execution diagram for the DLX code below running on a dynamically
scheduled 4-way superscalar implementation with the following characteristics:

• Dynamically scheduled using a reorder buffer to name registers (method 1).

• One load/store functional unit with stages L1 and L2.

• No dynamic (hardware) branch prediction, all branches are predicted not taken. Branch
predictor uses the B functional unit and must wait for its operand like any other instruction.

• Four integer execution units.
Find the IPC for an execution of a large number of iterations. Show the execution for 14 cycles

or until there is enough information to compute the IPC, which ever is shorter.

! Note: runs for many iterations.
add r3, r0, r0

LOOP:! LOOP = 0x1000
lw r1, 4(r2)
add r3, r3, r1
lw r2, 8(r2)
bneq r2, LOOP
xor r0, r0, r0

The pipeline execution diagram is shown below. The misprediction is detected in cycle 7 and the correct path
is fetched in cycle 8. The xor and following instructions get squashed (or flushed from the reorder buffer). Since the
iteration that starts at cycle 8 will take the same number of cycles as the one that starts at cycle 1 the IPC is 4

7 ≈ 0.571.

! Solution
! Cycle 0 1 2 3 4 5 6 7 8
add r3, r0, r0 IF ID EX WC
LOOP: ! LOOP = 0x1000
lw r1, 4(r2) IF ID L1 L2 WC IF ...
add r3, r3, r1 IF ID RS RS EX WC IF ...
lw r2, 8(r2) IF ID RS L1 L2 WC IF ...
bneq r2, LOOP IF ID RS RS RS B WC

IF ...
xor r0, r0, r0 IF ID EX WB x

5



Problem 5: Repeat the problem above when the branch is statically predicted as taken and the
branch target is computed in the ID stage.

The pipeline execution diagram is shown below. Since the branch target is computed in ID the target instruction
is fetched two cycles after the branch. (With a branch target buffer it would be fetched one cycle after the branch is
fetched.) The hardware is able to fetch and decode instructions in this loop at the rate of 2 IPC, but the completion rate
is lower due to dependencies between the loads. The second load must wait one cycle for the first load to move out of
L1, as it does in cycle 3. The first load must wait for the second load from the previous iteration to enter WB, as it does
in cycle 5. Because instructions are being fetched faster than they are begin committed some resource (such as reorder
buffer slots or reservation stations) will be used up. When that happens (not shown below) instructions will stall in ID
and fetch will drop to a rate of 4

3
instructions per cycle. This is much faster than 4

7
from the previous problem but still

less than the 4 IPC that the processor is capable of.

! Solution
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13
add r3, r0, r0 IF ID EX WC
LOOP: ! LOOP = 0x1000
lw r1, 4(r2) IF ID L1 L2 WC

IF ID RS L1 L2 WC
IF ID RS RS L1 L2 WC

IF ID RS RS RS L1 L2 WC
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13
add r3, r3, r1 IF ID RS RS EX WC

IF ID RS RS RS EX WC
IF ID RS RS RS RS EX WC

IF ID RS RS RS RS RS EX WC
lw r2, 8(r2) IF ID RS L1 L2 WC

IF ID RS RS L1 L2 WC
IF ID RS RS RS L1 L2 WC

IF ID RS RS RS RS L1 L2 WC
bneq r2, LOOP IF ID RS RS RS B WC

IF ID RS RS RS RS B WC
IF ID RS RS RS RS RS B WC

IF ID RS RS RS RS RS RS B WC
xor r0, r0, r0 IF x IF x IF x IF x
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

6



Problem 6: Repeat the superscalar problem when the branch is statically predicted taken and in
which the address of LOOP it 0x1004.

! Note: runs for many iterations.
add r3, r0, r0

LOOP:! LOOP = 0x1004
lw r1, 4(r2)
add r3, r3, r1
lw r2, 8(r2)
bneq r2, LOOP
xor r0, r0, r0

The pipeline execution diagram is shown below. Because of alignment the instructions for one iteration are fetched
in two groups. (In the previous example the four instructions in an iteration neatly fit on one group.) This adds an extra
cycle, so instructions are fetched at a rate of 4

3
IPC, which is the same rate at which they are executed. So, even though

instructions are fetched at a lower rate execution occurs at the same rate because of dependencies.

! Solution
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
add r3, r0, r0 IF ID EX WC
LOOP: ! LOOP = 0x1004
lw r1, 4(r2) IF ID L1 L2 WC

IF ID L1 L2 WC
IF ID L1 L2 WC

IF ID L1 L2 WC
add r3, r3, r1 IF ID RS RS EX WC

IF ID RS RS EX WC
IF ID RS RS EX WC

IF ID RS RS EX WC
lw r2, 8(r2) IF ID RS L1 L2 WC

IF ID RS L1 L2 WC
IF ID RS L1 L2 WC

IF ID RS L1 L2 WC
bneq r2, LOOP IF ID RS RS B WC

IF ID RS RS B WC
IF ID RS RS B WC

IF ID RS RS B WC
xor r0, r0, r0 IF IDx IF IDx IF IDx IF IDx IF IDx IF IDx
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7


