
EE 4720 Homework 2 Solution Due: 23 February 2000

Problem 1: The program below executes on the DLX implementation shown below. The implementation
uses forwarding (bypassing) to avoid some data hazards and stalls to avoid others. All forwarding paths are
shown. (If a needed forwarding path is not there, sorry, you’ll have to stall.) A value can be read from the
register file in the same cycle it is written. The destination field in the beqz is zero. Instructions are nulled
(squashed) in this problem by replacing with slt r0,r0,r0. All instructions stall in the ID stage.

! Initially, r1=0x1000, r2=0x2000, r3=0x3000
! MEM[0x1000] = 0xa0, MEM[0x1001] = 0xa1, MEM[0x1002] = 0xa2, etc.
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
START: ! START = 0x50
addi r1, r1, #8
lh r2, 2(r1)
sw 4(r1), r2
bneq r2, START (taken)
sub r2, r3, r1
sub r0, r0, r0
sub r0, r0, r0

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

The table below shows the contents of pipeline registers and changes to architecturally visible registers
r1-r31 over time. Cycle zero is the time that addi is in instruction fetch. The first two columns are
completed; fill in the rest of the table. Use a “?” for the value of the “immediate field” of a type R
instruction and for the output of the memory when no memory read is performed. Show pipeline register
values even if they’re not used. Assume that the ALU performs the branch target computation even though
it was already computed in ID. The row labeled “Reg. Chng.” shows a new register value that is available
at the beginning of the cycle. If r0 is written leave the entry blank.

Hint: See Spring 1999 HW 3 and Fall 1999 HW 2 for similar problems.

Completed table appears below. Numbers in table are in hexadecimal.

Cycle 0 1 2 3 4 5 6 7 8 9 10

PC 50 54 58 5c 5c 5c 60 50 54 58 5c

IF/ID.IR sub addi lh sw sw sw bneq sub addi lh sw

Reg. Chng. r0←0 r0←0 r0←0 r0←0 r1←1008 r2←ffffaaabr0←0 r0←0 r0←0 r0←0 r0←0

ID/EX.IR sub sub addi lh slt slt sw bneq sub addi lh

ID/EX.A 0 0 1000 1000 1000 1008 1008 ffffaaab 3000 1008 1008

ID/EX.B 0 0 1000 2000 2000 2000 ffffaaab 0 1008 1008 ffffaaab

ID/EX.IMM ? ? 8 2 4 4 4 -4 ? 8 2

EX/MEM.IR sub sub sub addi lh slt slt sw bneq sub addi

EX/MEM.ALU 0 0 0 1008 100a 1 1 100c 14 1ff8 1010

EX/MEM.B 0 0 0 1000 2000 2000 2000 ffffaaab 0 1008 1008

MEM/WB.IR sub sub sub sub addi lh slt slt sw bneq sub

MEM/WB.ALU 0 0 0 0 1008 100a 1 1 100c 14 1ff8

MEM/WB.MD ? ? 0 0 ? ffffaaab ? ? ? ? ?

To help solve the problem, find a pipeline execution diagram for the code (shown below). Cycle numbers in diagram and table
match.

1



LOOP:
! 0 1 2 3 4 5 6 7 8 9 10
addi r1, r1, #8 IF ID EX MEM WB IF ID EX MEM
lh r2, 2(r1) IF ID EX MEM WB IF ID EX
sw 4(r1), r2 IF ID -----> EX MEM WB IF ID
bneq r2, LOOP IF -----> ID EX MEM WB IF
sub r2, r3, r1 IFx
}

Problem 2: The execution of the code in the problem above should suffer a stall (not including the branch
delay). Add bypass path(s) to the diagram below needed to avoid the stall(s). Add only the bypass paths
needed to avoid the stalls encountered in the problem above, and no others. (The diagram below is the same
as the one in the first problem.)

START:
addi r1, r1, #8
lh r2, 2(r1)
sw 4(r1), r2
bneq r2, START
sub r2, r3, r1

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Add a bypass path from the output of the WB-stage multiplexor to a new multiplexor feeding the MEM-stage memory data-in
port. (The other input to the new multiplexor is from EX/MEM.B.)

2


