
Name Solution

Computer Architecture

EE 4720

Final Examination

8 May 2000, 10:00–12:00 CDT

Alias MPL phone home!!!

Problem 1 (20 pts)

Problem 2 (10 pts)

Problem 3 (10 pts)

Problem 4 (21 pts)

Problem 5 (39 pts)

Exam Total (100 pts)

Good Luck!

Problem 1: An extended DLX ISA, Triple-DLX [tm], includes new three-operand integer ALU in-
structions. (Assume that the integer ALU can perform integer multiply.) Some sample instructions
appear below:
add_add r1, r2, r3, r4 ! r1 = r2 + r3 + r4
add_mul r5, r6, r7, r8 ! r5 = (r6 + r7) * r8
mul_add r5, r6, r7, r8 ! r5 = (r6 * r7) + r8

(a) (8 pts)A new instruction type, Type-T, will be used for these instructions. Show how the new
Type-T instructions can be coded. The coding should be chosen to ease implementation and should
allow for at least 64 three-operand instructions. Assume that there are six free opcode field values
and seven free func-field values available for your use.

• Explain how to distinguish Type-T instructions from Type-R, Type-I, and Type-J in-
structions.

• How many Type-T instructions can be provided using your coding?

The DLX codings are given below for reference and can be used to explain your answer.

Type R:

Opcode

0

0 5

rs1

6 10

rs2

11 15

rd

16 20

func

21 31

Type I:

Opcode

0 5

rs1

6 10

rd

11 15

Immediate

16 31

Type J:

Opcode

0 5

Offset

6 31

The instruction format is similar to Type R, except an rs3 field is added. It’s added after rd, rather than before, so that
decoding logic would not have to look for rd in a third place. Type T instruction use one of the 6 opcodes, opcode 1 is
used in the example. The funcette field, at 6 bits, specifies which of 64 instructions to perform.

Type T:

Opcode

1

0 5

rs1

6 10

rs2

11 15

rd

16 20

rs3

21 25

funcette

26 31

2

(b) Modify the pipeline below so that it can execute the three-operand instructions. A second ALU
has been placed in the MEM stage; it should be used to help implement the instructions. The
register file is among the parts that need to be modified. (6 pts)

Changes to the pipeline are shown in red bold.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD
DataAddr C

C

21..25

4

6

8

(c) Show a pipeline execution diagram for the code below assuming that all needed bypass paths
are available. The code should execute as fast as possible. Add any needed bypass paths to the
diagram above. Do not add any bypass paths that are not needed by the code below. Label each
bypass path (added or already present) with the cycle in which it is used. Please be sure not to
miss any true dependencies. (6 pts)

The pipeline execution diagram is shown below. Note that the MEM stage has been labeled E2 to emphasize its role. Also
note that in cycle 8 r6 is bypassed to the second ALU in the E2 (MEM) stage. The bypass paths and the cycles in which
they are used are shown in blue in the illustration above.

! Solution
! Cycle 0 1 2 3 4 5 6 7 8 9
add_add r1, r2, r3, r4 IF ID EX E2 WB
add_sub r5, r1, r2, r3 IF ID -> EX E2 WB
sub_sub r6, r1, r5, r6 IF -> ID -> EX E2 WB
sub_add r7, r1, r5, r6 IF -> ID EX E2 WB

3

Problem 2: The code appearing on the next page executes on a dynamically scheduled machine
using physical registers to name destination registers.

Complete the tables, showing only changes. Show where instructions commit. Show only entries
associated with registers f0 and f6 in the physical register file.

At cycle zero, register f0 contains a 5, f2 contains a 20, f4 contains a 40, and f6 contains a 60.
None of the instructions raise exceptions. The diagram below is provided for convenience; it is the
same one used in class. (10 pts)

6..10

11..15

PR#1

Dest

Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

P
C

D
est

IR
*

S
t: C

,X
0,0

ROB #

St: C,X
Addr

D In

R
eo

rd
er

 B
uf

fe
r

Addr

D In

Reg. Map

Dest

Control

Control
ROB #

Op, IQ

Common Data Bus (CDB)

New
ROB #

tail

head

WB
C

ID

ID

ID

IDIF

PR#2

AddRemd

Free List

PR#P
R

#

AddRem

PR#
Data

Free List

New
PR#

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

Addr

Addr

Data

Data

Addr
D In

PR#1

PR#2

Val.

Val.

Physical
Register File

Op, PR#, ROB#

OutIn

Scheduler

Q EX

PR#

Val.

WB

Q

Q

WB

4

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

add f0,f2,f4 IF ID Q A0 A1 WC

add f6,f0,f4 IF ID Q A0 A1 WC

add f0,f4,f4 IF ID Q A0 A1 WB C

add f6,f0,f4 IF ID Q A0 A1 WB C

sub f0,f2,f4 IF ID Q A0 A1 WB C

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Arch. Reg. ID Register Map

f0 17 12 8 3

f6 6 7 4

ID Free List
12
7
8
4
3

7
8
4
3

8
4
3

4
3 3 17

17
6

17
6
12

17
6
12
7

17
6
12
7
8

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Commit Register Map

f0 17 12 8 3

f6 6 7 4

Commit Free List
12
7
8
4
3

7
8
4
3
17

8
4
3
17
6

4
3
17
6
12

3
17
6
12
7

17
6
12
7
8

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Phys Reg. Physical Register File

3 -20

4 120

6 60

7 100

8 80

12 60

17 5
5

Problem 3: Provide a pipeline execution diagram for the code below running on a dynamically
scheduled two-way superscalar machine using reorder buffer entry numbers to name destination
operands. Be sure to show when instructions complete.

There are more than enough reservation stations and reorder buffer entries. Do not show reservation
station numbers in the diagram. There are two load-store units and the cache is nonblocking.

The first lw misses the cache, the data arrives 6 cycles after it first enters the L1 stage; the second
lw also misses the cache, its data arrives 4 cycles after it first enters the L1 stage. (10 pts)

Carefully check the code for dependencies before working on a solution.

The pipeline execution diagram appears below. Note: Because the effective address of the second store is not known in
cycle 4, the last load cannot proceed (because of a possible dependency).

! Solution
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
lw r3, 0(r1) IF ID L1 L2 RS L2 WC
lw r5, 0(r2) IF ID L1 L2 RS L2 WB C
sw 0(r4), r5 IF ID L1 RS L2 WB C
lw r7, 0(r9) IF ID L1 L2 WB C
sw 0(r3), r1 IF ID RS L1 L2 WC
lw r8, 0(r10) IF ID L1 L2 WC

6

Problem 4: A system uses the following cache:

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=

20:3

Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

64

Hit

Data

 Addr

Tag

 Addr

=Tag

Valid

20:920:9

20:3 20:3

20:9

64

Out

Out

Out

Out

Out

Data

 Addr

Tag

 Addr

=Tag

Valid

20:3

20:9

Out

Out

(a) Determine the value of the following parameters for the cache illustrated above. Be sure to
specify units (bits, bytes, etc.). Answers can be in the form of mathematical expressions. (8 pts)

Associativity: 4

Number of Sets: Solution: 220−9+1 = 212.

Address Space Size: 64 bits

Block (Line) Size: Solution: 29 = 512 characters

Cache Capacity: Solution: 4 × 221 characters.

Amount of Memory to Implement Cache: Solution: 4 × 221 characters plus 4 × 212 ((63 − 21 + 1) + 1) bits.

Character Size: 8

Tag Bits: (Can show on diagram.) Solution: 63:21.

7

(b) Write a program that will fill the cache using the minimum number of accesses. (Ignore instruc-
tion accesses.) (8 pts)
void fill()
{
extern char *a;

int line_size_lg = 9;
int line_size = 1 << line_size_lg;
int associativity = 4;
int set_count_lg = 12;
int line_count = associativity * (1 << set_count_lg);
int i, dummy;

for(i=0; i<line_count; i++) dummy += a[i * line_size];

}

(c) Determine the parameters for a direct-mapped cache with the same block size and the same
capacity designed for the same system. (5 pts)

Associativity: One, because it’s direct mapped.

Number of sets: Solution: 212+2

Address Space Size: Solution: 64, no change.

Block (Line) Size: (Same, don’t answer.)

Cache Capacity: (Same, don’t answer.)

Character Size: Same, 8 bits.

Tag Bits: Two less: 63:23.

8

Problem 5: Answer each question below.

(a) The program below runs on a system using a gselect branch predictor. What is the minimum
global history size needed so that there is a good chance that the last branch will be correctly
predicted at the last iteration (after warmup)? Assume that there are no collisions. Explain your
answer. (7 pts)

addi r1, r0, #10
add r5, r0, r0
LOOP:
lw r2, 0(r3)
add r5, r5, r2
subi r1, r1, #1
addi r3, r3, #4
bneq r1, LOOP

If execution is at the last branch and at least one of the previous 9 branches was not taken, then execution surely has not
reached the 10th iteration. It would take a global history length of 9 to hold this information. Prediction would not be
perfect, it would depend on whether the last branch encountered before reaching the loop is taken.

(b) What is the advantage of backing up (checkpointing) the register map when a branch is encoun-
tered in a system using branch prediction and dynamic scheduling? Explain how execution would
be different if the register map were not backed up. (7 pts)

If the register map is backed up and a branch misprediction is discovered the register map can be restored to the state
it was in when the branch was encountered without having to wait for preceding instructions to commit. With a register
map backup recovery can start in the WB stage of the branch, without a backup recovery must wait for the commit stage.

9

(c) Why are three-way superscalar machines difficult to build but three-instruction-bundle VLIW
ISAs are common? (5 pts)

Superscalar machines are built on existing ISAs, many of which use 32-bit instructions. If 32-bit instructions were fetched
in groups of three the fetches would be unaligned and so would take more expensive hardware. In many VLIW ISAs, three
instructions are placed in 128-bit bundles, so their addresses are aligned.

While its true that VLIW ISAs allow for less expensive hardware, a three-way superscalar machine is still small and so the
hardware needed for dependency checking, register renaming, and scheduling would be less than difficult.

(d) An ISA is almost like DLX except, oops, the lbu (load byte unsigned) instruction was omitted,
and so the program below won’t run on an implementation of this ISA. Modify the program so
that it will run, and run as though an lbu instruction was used. (In other words, replace lbu r1,
1(r2) by instructions that do the same thing.) (5 pts)

lbu r1, 1(r2)

! A correct answer:
lb r1, 1(r2)
andi r1, r1, #0xff

! A WRONG answer:
lw r1, 1(r2) ! Error, since address may not be aligned.
andi r1, r1, #0xff

10

(e) The table below shows virtual and physical addresses in use in a virtual memory system having
a 32-bit address space. What is the largest possible page size this system can have? Using this
page size (or some other one, but show what page size is being used) show the possible contents of
a two-level page table storing this virtual-to-physical mapping. State any assumptions made. (For
partial credit solve the problem for a one-level page table.) (10 pts)

Virtual Physical
0xfea34b62 0x74b4b62
0xfeb92b90 0x14b2b90
0xeaa31f16 0x77b1f16

The number of offset bits is the log-base-2 of the page size. The offset bits of physical and virtual addresses are the same,
so the largest possible page size here is 217 characters (because the low 17 bits of 9xfea34b62 and 0x74b4b62 are the
same, the low 17 bits of 0xfeb92b90 and 0x14b2b90 are the same, and the low 17 bits of 0xeaa31f16 and 0x77b1f16 are
the same). Note that it’s possible the page size is smaller.

The solution below is for a 216 character page. The level-one table is index using the upper 8 bits of the address and the
second-level table is index using the next 8 bits.

Level One Page Table:

Address Level Two Base

...
...

0xea 3000
...

...
0xfe 7000
...

...

Level Two Page Table:

Address Physical Page Number

...
...

3000
...

...
...

30a3 77b
...

...

7000
...

...
...

70a3 74b
...

...
70b9 14b
...

...

(f) Describe two ways that loop unrolling improves performance. (5 pts)

11

Fewer branches are needed, eliminating the instruction themselves plus the branch penalty. Certain operations, such as
index variable increments can be eliminated. Greater scheduling freedom.

12

