
Name

Computer Architecture

EE 4720

Midterm Examination

20 October 1999, 10:40–11:30 CDT

Alias

Problem 1 (33 pts)

Problem 2 (33 pts)

Problem 3 (34 pts)

Exam Total (100 pts)

Good Luck!



Problem 1:

(a) Add exactly the bypass paths that are needed so the code below executes as shown in the pipeline
execution diagram. (Don’t add any bypass paths that are not needed by the code.) (15 pts)

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

! r1 = 0x1010 r2 = 0x2020, r3 = 0x3030, r4 = 0x4040, r5 = 0x5050
! Cycle 0 1 2 3 4 5 6 7
LINE1: LINE1 = 0x100
lw r1, 16(r2) IF ID EX MEM WB IF ID EX ...
addi r2, r2, #4 IF ID EX MEM WB IF ID ...
sw 20(r2), r1 IF ID EX MEM WB IF ...
beqz r2, LINE1 IF ID EX MEM WB ...
and r3, r4, r5 IFx

(b) Show the values of the registers listed below in cycle 4 of the execution above using the added
bypass paths. Assume that the load instruction retrieves a 0x1234 from memory. Instructions are
squashed by replacing them with an or r0, r0, r0. (18 pts)

IF.PC

IF/ID.NPC

IF/ID.IR

ID/EX.A

ID/EX.B

ID/EX.IMM

ID/EX.IR

EX/MEM.ALU

EX/MEM.B

EX/MEM.IR

MEM/WB.ALU

MEM/WB.MD

MEM/WB.IR

2



Problem 2:

(a) Show a pipeline execution diagram for the code below on the implementation shown until lw
is fetched a second time. The first branch is not taken but the last one is. The only bypass paths
available are the ones shown. (18 pts)

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

LOOP:

lw r1, 0(r2)

andi r3, r1, #4

beqz r3, LINE1

add r4, r4, r1

j LINE2

LINE1:

add r5, r5, r1

LINE2:

sw 4(r2), r1

addi r2, r2, #8

bneq r2, LOOP

xor r5, r6, r7

3



(b) Rewrite the code below (which is the same as the code on the previous page) using one-cycle
delayed branches and predicated instructions and schedule the code so that it executes as quickly
as possible. (Do not unroll the loop.) Assume that bypass paths are provided for the predicated
instructions. It should be possible to remove all stalls, but if any remain point them out (for partial
credit). (15 pts)

LOOP:
lw r1, 0(r2)
andi r3, r1, #4
beqz r3, LINE1
add r4, r4, r1
j LINE2

LINE1:
add r5, r5, r1

LINE2:
sw 4(r2), r1
addi r2, r2, #8
bneq r2, LOOP
xor r5, r6, r7

4



Problem 3: Answer each question below.

(a) Why do DLX branches (and branches in many other ISAs) use displacement addressing? Why
don’t branches use indirect addressing (destination address in a register) instead of displacement
addressing? (8 pts)

(b) The code below executes on an implementation that uses a reservation register to detect WB
structural hazards. At cycle zero the reservation register contains all zeros. Show the state of the
reservation register at the end of each cycle below. Indicate which (if any) bit positions are tested
in each cycle. (9 pts)

! Cycle 0 1 2 3 4 5 6 7 8 9 10
multf f0, f1, f2 IF ID M0 M1 M2 M3 M4 M5 WB
addf f3, f4, f5 IF ID A0 A1 A2 A3 WB
subf f6, f7, f8 IF ID -> A0 A1 A2 A3 WB
gtf f9, f10, f11 IF -> ID A0 A1 A2 A3 WB
nop
nop
...

5



(c) Many packed operand instructions perform saturating arithmetic. What is saturating arith-
metic? Provide an example. (8 pts)

(d) In homework 3, a special return address register (ERA) was used to hold exception return
addresses. The jump and link instructions, jal and jalr, use r31 for the return address; is this
an option for exceptions? Explain. (9 pts)

6


